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DUALITY GAP IN CONVEX PROGRAMMING

T. CHAMPION

Abstract. In this paper, we consider general convex programming problems and give a
su�cient condition for the equality of the in�mum of the original problem and the supremum
of its ordinary dual. This condition may be seen as a continuity assumption on the constraint
sets (i.e. on the sublevel sets of the constraint function) under linear perturbation. It allows
us to generalize as well as treat previous results in a uni�ed framework. Our main result
is in fact based on a quite general constraint quali�cation result for quasiconvex programs
involving a convex objective function proven in the setting of a real normed vector space.
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1. Introduction

Let (P0) be the following ordinary convex program

(P0) Inf {f(x) : f1(x) ≤ 0, . . . , fk(x) ≤ 0}

where the fonctions f, fi : RN → R ∪ {+∞} are proper, convex and lower semi-continuous. In
the sequel, we shall assume that Inf(P0) < +∞, which means that the constraint set intersects
the domain of f . It is classical to associate with problem (P0) the following dual convex problem

(D) Sup

{
inf{f(x) +

k∑
i=1

λifi(x) : x ∈ RN} : λ1 ≥ 0, . . . , λk ≥ 0

}
.

Then it can be checked that Inf(P0) ≥ Sup(D), and when Inf(P0) ∈ R the di�erence δ :=
Inf(P0)−Sup(D) between these two optimal values is non-negative. Notice that if Inf(P0) = −∞,
one obviously has Sup(D) = −∞ so that we may set δ := 0 as well. When the di�erence δ is
positive, it is said that there is a duality gap between (P0) and (D). It is well known that the
existence of a duality gap is closely related to the study of the approximated problems (Pε) given
by

(Pε) Inf {f(x) : f1(x) ≤ ε, . . . , fk(x) ≤ ε}

where ε is a positive parameter. Indeed, if we denote v : [0,+∞[→ R the value function which
associates to any t ≥ 0 the value v(t) := Inf(Pt), then v is convex, non-increasing on [0,+∞[
and duality theory yields lim

ε→0,ε>0
v(ε) = Sup(D). As a consequence, the existence of a duality

gap between (P0) and (D) is equivalent to the fact that v is not continuous at 0. We refer to
[2], [3] and [8] for more details on duality theory and the link with the continuity of v.

The question of �nding conditions on the functions f, fi which ensure that there is no duality
gap (i.e. δ = 0) is not only important for the theoretical understanding of the duality gap
phenomenum but also for numerical purposes. Indeed, in numerical lagrangian methods for
�nding the in�mum of (P0), it is important that there is no duality gap since these methods
compute the supremum of (D). In this paper, we shall focus our attention on the duality gap
issue without adressing the existence of Lagrange multipliers. We give a new condition, which
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we denote property D, which ensures that there is no duality gap between (P0) and (D). In
fact, property D may in some sense be considered as a characterization of the absence of duality
gap: indeed theorem 2.6.i yields that there is no duality gap whenever this property is satis�ed
together with a mild assumption on the objective function f , while theorem 2.6.ii implies that
there exists smooth objective functions f for which there is a positive duality gap when property
D is not satis�ed. This condition is quite general since the semi-continuity result for the value
function v that we prove is in fact obtained in the setting of quasiconvex constraint functions fi

de�ned on a real normed vector space which may be in�nite dimensional (see theorem 2.6). In
the setting of convex programming in �nite dimensions, this result improves previous works by
Auslender [1], Kummer [4], Li [5] and Rockafellar [7]. Our result also allows to recover that the
usual Slater constraint quali�cation as well as the compactness hypothesis on the constraint set
are su�cient conditions for there is no duality gap. These issues are discussed more precisely
after theorem 4.1 in �4.

The paper is organized as follows: we de�ne property D in �2 in the general setting of
quasiconvex functions over a normed vector space, and we provide some examples and prove
the main stability result (theorem 2.6). Section 3 is devoted to the convex setting and �nite
dimensional setting, in which we can prove �ner existence results for functions satisfying property
D. Finally the main result on the duality gap phenomenum in convex programming (theorem
4.1) is given and discussed in �4, where the results of the two �rst sections are commented.

2. The property D in quasiconvex programming

In the following, E denotes a real normed vector space. We recall that a function h : E →
R ∪ {+∞} is quasiconvex if its sublevels {h ≤ t} are convex for any t ∈ R. We denote by A the
closure of a subset A of E.

De�nition 2.1. Let h : E → R∪{+∞} be a lower semi-continuous proper quasiconvex function.

Let t belong to h(E) \ {+∞}, then h satis�es property D(t) whenever

D(t)
⋂
s>t

{h ≤ s}+ F = {h ≤ t}+ F

for any closed subspace F of E.

In fact, it is easy to check that h satis�es condition D(t) whenever

∀F closed subspace of E
⋂
s>t

{h ≤ s}+ F ⊂ {h ≤ t}+ F .

For example, any l.s.c. quasiconvex function h : R → R ∪ {+∞} satis�es property D(t) for
all t ∈ h(R) \ {+∞}: indeed, the only test subspaces to be considered are {0} and R. Other
simple examples are the distance functions and indicator functions of closed convex subsets of
E, as well as continuous a�ne forms over E:

Lemma 2.2. Let C ⊂ E be nonempty, closed and convex, then the convex functions x 7→ δC(x)
and x 7→ d(x,C) satisfy property D(t) for any non-negative t.

Proof. We recall that the indicator function x 7→ δC(x) is given by δC(x) = 0 for x in C and
δC(x) = +∞ otherwise. Then since it only takes the two values 0 and +∞, one has

∀t ∈ [0,+∞[ {δC ≤ t}+ F = {δC ≤ 0}+ F

for any closed subspace F of E.
On the other hand, let F be a closed subspace of E, let t belong to [0,+∞[ and assume that

x belongs to
⋂

s>t {d(., C) ≤ s}+ F . Then there exist two sequences (xn)n and (ξn)n such that
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d(xn, C) ≤ t + 1
n and ξn ∈ F for any n as well as xn + ξn → x. Now for any n ∈ N there exists

yn such that d(yn, C) ≤ t as well as ‖xn − yn‖ ≤ 2
n . Since ‖(xn + ξn)− (yn + ξn)‖ → 0, we infer

yn + ξn → x and thus x belongs to {d(., C) ≤ t}+ F . �

Lemma 2.3. Let h : E → R be a non-constant continuous a�ne form, then h satis�es D(t) for

any t in R.

Proof. Let F be a closed subspace of E. Then either F is included in the kernel of the linear
part of h, in which case {h ≤ t}+ F = {h ≤ t} for any t ∈ R, or F is not included in that kernel
in which case {h ≤ t}+F = E for any t ∈ R. In both cases property D(t) is easily checked. �

Among those functions h that also satisfy property D(t) for any t ∈ h(E) \ {+∞}, one may
think to weakly coercive functions, as the following lemma shows.

Lemma 2.4. Let h : E → R ∪ {+∞} be a l.s.c. proper quasiconvex function such that {h ≤ t}
is weakly sequentially compact for any t ∈ R. Then h satis�es D(t) for any t in h(E) \ {+∞}.

Proof. Let t in h(E)\{+∞} and F be a closed subspace of E. Let x belong to
⋂

s>t {h ≤ s}+ F ,

then there exist two sequences (xn)n and (ξn)n such that: xn + ξn → x, xn ∈ {h ≤ t + 1
n} and

ξn ∈ F for any n ∈ N. We can extract from (xn)n a converging subsequence (xnk
)k which weakly

converges to some z ∈ {h ≤ t}, and then (ξnk
)k weakly converges to x− z ∈ F , thus x belongs

to {h ≤ t}+ F . �

If E is �nite dimensional, then lemma 2.3 yields that any a�ne function h satis�es D(t) for
any t in h(RN ), and more generally we shall see in �3 that this also holds true for any analytic
convex function h : RN → R . Let us give an example of a continuous convex function which
does not satisfy this property. We de�ne the convex continuous function g on R2 by

g(x, y) :=
√

x2 + y2 − x. (2.1)

The function g is that given in Du�n's example of a duality gap (see [2]). Then 0 ∈ g(R2) but
g does not satisfy D(0). Indeed, take F = R× {0}, then one has⋂

s>0

{g ≤ s}+ F = R2 6= R× {0} = {g ≤ 0}+ F .

We notice on the above example that the functions (x, y) 7→
√

x2 + y2 and (x, y) 7→ −x satisfy
D(0) (the �rst is the distance to {(0, 0)}, the second is a�ne) whereas their sum does not.

Property D may be seen as a stability condition for the sublevel sets of h under linear pertur-
bation. The following result gives another caracterization which will reveal more easy to handle
in the proof of theorem 2.6.

Proposition 2.5. Let h : E → R ∪ {+∞} be an l.s.c. quasiconvex function, and let t ∈
h(E) \ {+∞}. The following are equivalent

(1) h satis�es D(t);
(2) for any closed convex set C ⊂ E such that {h ≤ s} ∩ C 6= ∅ for any s > t, the distance

d({h ≤ t}, C) is equal to 0.

In the above statement, the gap d(A,B) between two subsets A and B of E is de�ned by
d(A,B) := inf{d(x,B) : x ∈ A}.

Proof. We �rst prove (1) ⇒ (2) by contradiction. Assume that C ⊂ E is convex, {h ≤ s}∩C 6= ∅
for any s > t and d({h ≤ t}, C) > 0. Then the Hahn-Banach theorem yields the existence of a
continuous linear form l such that

sup {l(x) : x ∈ C} < inf {l(x) : x ∈ {h ≤ t}} . (2.2)
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If we denote by H the kernel of l, this yields

C + H ∩ {h ≤ t}+ H = ∅. (2.3)

On the other hand, one has

C + H ∩ {h ≤ s}+ H 6= ∅ (2.4)

for any s > t. Moreover, let us note that

∀x ∈ E ∀A ⊂ E l(x) ∈ l(A) ⇒ x + H ⊂ A + H. (2.5)

Indeed, take y ∈ E such that l(y) = 1 and let (αn)n be a sequence in l(A) such that αn → l(x).
Since for any α ∈ R one has αy + H = {l = α}, we infer that αny belongs to A + H for any n
so that l(x)y belongs to A + H and thus x + H = l(x)y + H is included in A + H.

Let x ∈ E be such that l(x) = sup {l(x) : x ∈ C}. We notice that x + H = {l = l(x)} and we

get from (2.5) that x + H is included in C + H. Let s > t, then the set {h ≤ s}+ H is convex

and contains {h ≤ t}+ H, so we infer from (2.2) and (2.4) that l(x) belongs to l({h ≤ s}+ H).
As a consequence of (2.5), x + H is included in {h ≤ s}+ H for any s > t, so that

(x + H) ⊂

(
C + H ∩

⋂
s>t

{h ≤ s}+ H

)
.

This together with (2.3) obviously contradicts that h satis�es D(t).
We now turn to (2) ⇒ (1). Assume that F is a closed subspace of E such that

x ∈
⋂
s>t

{h ≤ s}+ F \ {h ≤ t}+ F (2.6)

for some x. Then there exists r > 0 such that B(x, r) + F ∩ {h ≤ t}+ F is empty, so that

d(C, {h ≤ t}) ≥ r
2 > 0 where C := B(x, r

2 ) + F . But (2.6) yields that C ∩ {h ≤ s} 6= ∅ for any
s > t, which contradicts (2). �

The following result links property D and the existence of a duality gap in mathematical
programming.

Theorem 2.6. Let h : E → R ∪ {+∞} be an l.s.c. quasiconvex function and let t belong to

h(E) \ {+∞}. If f : E → R ∪ {+∞} is a convex function, we set

∀s ≥ t v(s) := inf{f(x) : h(x) ≤ s}.

Then one either has

i. h satis�es condition D(t), in which case lim
s→t,s>t

v(s) = v(t) for any l.s.c. convex function

f : E → R∪ {+∞} such that f is �nite and continuous at at least one point of {h ≤ t}.
ii. h does not satisfy condition D(t), in which case there exists a continuous linear form

f : E → R for which lim
s→t,s>t

v(s) < v(t).

Proof. i. Assume �rst that h satis�es D(t), and let f : E → R∪{+∞} be a l.s.c. convex function
which is continuous at some point x̃ ∈ {x : h(x) ≤ t}. We aim to show that the value function
v(.) is l.s.c. at t. We may assume without loss of generality that v(t) > −∞. We proceed by
contradiction: suppose that

lim inf
s→t,s>t

v(s) ≤ α < v(t) (2.7)
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for some α ∈ R. Then if we set δ := (v(t)−α)/3, hypothesis (2.7) yields that {f ≤ α+δ}∩{h ≤
s} 6= ∅ for any s > t. Then applying proposition 2.5 yields

d({f ≤ α + δ}, {h ≤ t}) = 0.

As a consequence, there exist two sequences (xn)n and (yn)n such that xn−yn → 0 and h(xn) ≤ t
and f(yn) ≤ α + δ for any n ∈ N. Since f is continuous at x̃, there exists r > 0 such that f is
bounded by some number M over the ball B(x̃, 2r). For any n ∈ N, we set

zn :=
‖xn − yn‖

‖xn − yn‖+ r
x̃ +

r

‖xn − yn‖+ r
xn, (2.8)

and we notice that zn also satis�es

zn =
‖xn − yn‖

‖xn − yn‖+ r

(
x̃ +

r

‖xn − yn‖
(xn − yn)

)
+

r

‖xn − yn‖+ r
yn. (2.9)

Since x̃ and xn belong to {h ≤ t}, we deduce from (2.8) and the quasiconvexity of h that
h(zn) ≤ t for any n ∈ N. We then deduce from (2.9) and the convexity of f that

lim sup
n→+∞

f(zn) ≤ lim sup
n→+∞

(
‖xn − yn‖

‖xn − yn‖+ r
M +

r

‖xn − yn‖+ r
(α + δ)

)
= α + δ

so that v(t) ≤ α + δ ≤ 2
3α + 1

3v(t), which is a contradiction.
ii. Assume now that h does not satisfy D(t). This means that there exist a closed subspace

F of E and a vector z such that

z ∈
⋂
s>t

{h ≤ s}+ F \ {h ≤ t}+ F .

Then the Hahn-Banach theorem yields the existence of a continuous linear form f : E → R such
that

f(z) < α := inf
{

f(x) : x ∈ {h ≤ t}+ F
}

.

As a consequence, F is included in the kernel of f , so that

v(s) = inf {f(x) : x ∈ {h ≤ s}} = inf
{

f(x) : x ∈ {h ≤ s}+ F
}
≤ f(z)

for any s > t. Therefore lim sup
s→t,s>t

v(s) ≤ f(z) < α = v(t), which concludes the proof. �

We notice that the hypothesis f is continuous at at least one point of {h ≤ 0} in theorem 2.6.i
can't be weakened in general. Indeed, de�ne the convex functions h, f : R → R by h(x) = x,
and f(x) = +∞ for x < 0, f(0) = 1 and f(x) = 0 for x > 0. Then h obviously satis�es D(0)
but lim

s→0,s>0
v(s) = 0 < 1 = v(0).

3. The property D in the convex case

As the following proposition shows, for a convex function h the property D(t) only really
makes sense for the special case t = min(h).

Proposition 3.1. Let h : E → R ∪ {+∞} be a closed proper convex function. Then for any t
in ] inf(h),+∞[ , h satis�es condition D(t).
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Proof. Let t belong to ] inf(h),+∞[ and F be a closed subspace of E. To check that⋂
s>t

{h ≤ s}+ F ⊂ {h ≤ t}+ F ,

we �x some z in
⋂

s>t {h ≤ s}+ F : there exist two sequences (xn)n∈N and (ξn)n∈N such that
(xn + ξn)n∈N converges to z, with h(xn) ≤ t + 1/n and ξn ∈ F for any n ≥ 1. Let now y in E
be such that h(y) < t, we then set for any n ≥ 1:

αn :=
t− h(y)

t + 1
n − h(y)

and x̃n := αnxn + (1− αn)y.

Then αn belongs to ]0, 1[ and we infer from the convexity of h that h(x̃n) ≤ t for any n ≥ 1.
Since (αn)n converges to 1 as n goes to +∞ and since

‖x̃n + αnξn − z‖ ≤ αn‖xn + ξn − z‖+ (1− αn)‖y − z‖

we conclude that (x̃n + αnξn)n converges to z, so that z belongs to {h ≤ t}+ F . �

Proposition 3.1 above does not hold for quasiconvex functions. Let us indeed de�ne the
continuous quasiconvex function g̃ on R2 by

g̃(x, y) :=

 g(x, y) if y ≥ 0,
g(x, 0) = −2x if x, y ≤ 0,
max(−x, y) if x ≥ 0, y ≤ 0,

where g is de�ned by (2.1). Then g̃(1,−1) = −1 but g̃ does not satisfy D(0) since⋂
s>0

{g̃ ≤ s}+ R× {0} = R2 6= R× ]−∞, 0] = {g̃ ≤ 0}+ R× {0}.

It has already been noticed that property D(t) is not stable under the addition, the following
proposition shows that it is stable under the max operation under mild assumptions.

Proposition 3.2. Let t ∈ R and f1, f2 : E → R ∪ {+∞} be proper l.s.c. convex functions such

that {f1 < t} ∩ {f2 ≤ t} 6= ∅ and f1 is continuous at some point y in {f1 < t} ∩ {f2 ≤ t}. Then
if f2 satis�es D(t), the function h := max{f1, f2} also satis�es condition D(t).

Proof. Let l : E → R be a continuous linear form. We claim that

lim
s→t,s>t

inf{l(x) : f1(x) ≤ s, f2(x) ≤ s} = inf{l(x) : f1(x) ≤ t, f2(x) ≤ t}. (3.1)

For any s ≥ t, we set v(s) := inf{l : f1, f2 ≤ s}. We �rst claim that lims→t v(s) = lims→t w(s)
where w(s) := inf{l : f1 ≤ t, f2 ≤ s} for any s ≥ t. Indeed, let (xs)s>t be a family such that
l(xs) ≤ v(s) + s− t and f1(xs), f2(xs) ≤ s for any s > t. Let y ∈ {f1 < t} ∩ {f2 ≤ t} and set

∀s > t αs :=
t− f1(y)
s− f1(y)

.

Then αsxs + (1− αs)y belongs to {f1 ≤ t, f2 ≤ s} for any s > t and

lim
s→t

v(s) ≤ lim
s→t

w(s) ≤ lim
s→t

l(αsxs + (1− αs)y) ≤ lim
s→t

v(s)

which proves the claim. We now notice that

w(s) = inf{l(x) + δ{f1≤t}(x) : f2(x) ≤ s}
for any s ≥ t. Since by hypothesis the function l + δ{f1≤t} is continuous at some point y in
{f2 ≤ t}, we may apply theorem 2.6.i which yields that lim

s→t,s>t
w(s) = w(t) = v(t), which

concludes the proof of (3.1). Since (3.1) holds for any continuous linear form l, theorem 2.6.ii
yields that h satis�es D(t). �
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The conclusion of proposition 3.2 may not hold when {f1 < t} ∩ {f2 ≤ t} = ∅, even if the
functions f1 and f2 are continuous on E. For example, consider the convex cones C1 and C2 of
R3 given by

C1 := {(x, y, z) : x ≥ 0, ‖(y, z)− (x, 0)‖ ≤ x} ,

C2 := {(x, y, z) : x ≥ 0, ‖(y, z)− (−x, 0)‖ ≤ x} .

Then the distance functions f1 := d(C1, .) and f2 := d(C2, .) to these sets both satisfy condition
D(0) and are both Lipschitz continuous on R3, but the function h := max{f1, f2} does not
satisfy D(0) since⋂

s>0

{h ≤ s}+ R× {(0, 0)} = R× {0} × R 6= R× {(0, 0)} = {h ≤ 0}+ R× {(0, 0)}.

We now turn more speci�cally to the �nite dimensional case, and prove that a wide class
of convex functions satisfy property D in that setting. Before this, we recall the de�nitions of
the notion of weakly analytic (or quasianalytic) functions introduced in [4] and of the class of
functions F introduced in [1].

De�nition 3.3. Let h : RN → R∪ {+∞} be an l.s.c. proper convex function. Then f is weakly

analytic if the following holds: if f is constant on a segment [x, y] for some x 6= y, then f is

constant on the whole line (x, y).
The function h belongs to the class of functions F if the following holds: for any ρ > 0, any

sequence (αn)n of real numbers converging to some α and any sequence (xn)n in RN such that

∀n ∈ N xn ∈ {h ≤ αn} , ‖xn‖ → +∞ ,
xn

‖xn‖
→ x ∈ {h∞ = 0}

there exists n0 ∈ N such that

∀n ≥ n0 xn − ρx ∈ {h ≤ αn}.

In the above de�nition, h∞ denotes the recession function of h. Of course, analytic convex
functions are weakly analytic, so that any linear function and any convex quadratic function is
weakly analytic. Moreover, any strictly convex function is obviously weakly analytic. Linear
and convex quadratic functions also are good examples of functions belonging to the class F ,
and this class of function is stable under the �max� operation. We refer to [1] and [4] for more
examples of functions in both classes. We also point out that these two classes of functions are
distinct as shown in [1].

Thanks to the notions introduced in de�nition 3.3, the following result enables to show that
many functions satisfy property D.

Proposition 3.4. Let fi : RN → R be continuous convex functions such that for any i in

{1, . . . , k} either fi is weakly analytic or f belongs to F . Then h := max{fi : i = 1, . . . , k}
satis�es condition D(t) for any t in h(RN ).

Proof. Thanks to proposition 3.1, it is su�cient to check that h satis�es D(t) for t := min(h)
whenever h attains its minimum on RN (otherwise there is nothing to prove). Assume that
h attains t := min(h) on RN . Let I be the set of indices i in 1,...,k such that for some x ∈
Argmin(h) one has fi(x) < t. Then by convexity there exists x in Argmin(h) such that fi(x) < t
for any i ∈ I. If we set hI := max{fi : i ∈ I} and hJ := max{fj : j /∈ I}, proposition 3.2
yields that it is su�cient to check that hJ satis�es property D(t). We may then assume that t
is the minimum of hJ on RN , otherwise proposition 3.1 applies again. Repeating the preceding
arguments, we may also assume that any function fj with j /∈ I is constant and equal to t on
Argmin(hJ).
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Let now F be a subspace of RN , and let z belong to
⋂

s>t {hJ ≤ s}+ F . Let then (xn)n∈N
be such that for any integer n ≥ 1, xn is of minimal norm among those vectors y ∈ RN such
that there exists ξ in F for which

‖z − (y + ξ)‖ ≤ 1/n and hJ(y) ≤ t + 1/n.

Let then (ξn)n be such that ‖z − (xn + ξn)‖ ≤ 1/n for any n ≥ 1. If ‖xn‖ 6→ +∞, then it is

easily checked that z belongs to {hJ ≤ t}+ F . We may thus assume that ‖xn‖ → +∞ as well as
xn

‖xn‖ → x for some x in RN . Since hJ attains its minimum t on RN , we infer that hJ∞(x) = 0,
and then since any function fj with j /∈ I is constant and equal to t on Argmin(hJ) we also

infer that fj∞(x) = 0 for any such j. Moreover, we notice that ξn

‖xn‖ → −x so that x belongs to

F .
Let now Jw (resp. JF ) denote the set of indices in j ∈ {1, . . . , k} \ I such that fj is weakly

analytic (resp. fj ∈ F). Then by de�nition, the functions fj for which j ∈ Jw are constant in
the direction x, so that fj(xn − x) ≤ t + 1/n for any such function. On the other hand, there
exists n0 ∈ N such that fj(xn − x) ≤ t + 1/n for any n ≥ n0 and j ∈ JF . Now one has

∀n ≥ n0 hJ(xn − x) ≤ t + 1/n , ξn + x ∈ F , ‖z − ((xn − x) + (ξn + x))‖ ≤ 1
n

.

We conclude as in [1] by noticing that

‖xn − x‖ =
∥∥∥∥(1− 1

‖xn‖
)xn + (

xn

‖xn‖
− x)

∥∥∥∥ ≤ (1− 1
‖xn‖

)‖xn‖+
∥∥∥∥ xn

‖xn‖
− x

∥∥∥∥
and since ‖xn − x‖ ≥ ‖xn‖ (xn is of minimal norm), this yields

∀n ≥ n0 1 ≤
∥∥∥∥ xn

‖xn‖
− x

∥∥∥∥ .

We then infer the contradiction 1 ≤ 0 by letting n go to +∞. As a consequence (xn)n is
necessarily bounded and the proof is complete. �

4. Duality gap in convex programming

We now go back to the duality gap in convex programming: for any non-negative t, we
consider the ordinary convex program (Pt) given by

(Pt) Inf
{
f(x) : x ∈ RN , f1(x) ≤ t, . . . , fk(x) ≤ t

}
where the fonctions f, fi : RN → R ∪ {+∞} are proper, convex and lower semi-continunous. In
the following, we assume that Inf(P0) > −∞. The dual convex problem associated to (P0) is
then given by

(D) Sup

{
inf{f(x) +

k∑
i=1

λifi(x) : x ∈ RN} : λ1 ≥ 0, . . . , λk ≥ 0

}
.

Convex duality theory then yields that there is no duality gap between (P0) and (D) whenever
the value function v : R+ → R ∪ {−∞} is lower semi-continuous at 0, where v is associated to
the family of problems (Pt)t≥0 by v(t) := Inf(Pt) for any t ≥ 0 (we refer to ch. 3 in [3]). As a
straightforward corollary of theorem 2.6, we get the following result on the duality gap in convex
programming.

Theorem 4.1. Let fi : RN → R∪ {+∞} be l.s.c. convex functions such that the set {h ≤ 0} is

not empty, where h := max{f1, . . . , fk}. Then one either has
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i. h satis�es condition D(0), in which case there is no duality gap between (P0) and (D)
whenever the l.s.c. convex function f : RN → R ∪ {+∞} is �nite and continuous at at

least one point of {h ≤ 0}.
ii. h does not satisfy condition D(0), in which case there exists an a�ne function f : RN →

R for which the duality gap between (P0) and (D) is positive.

The results obtained so far in sections 2 and 3 concerning property D then yield the following
results and comments.

• When one function fi is coercive on RN (which in �nite dimension reads fi(x) → +∞
whenever ‖x‖ → +∞), lemma 2.4 yields that the function h satis�es property D(0), so
that theorem 4.1.i applies. Notice that in this case, the fact that there is no duality gap
is in fact a simple consequence of the compactness of the constraint sets involved in the
problems (Pt).

• When the functions fi satisfy the Slater condition (i.e. {h < 0} is not empty), then
proposition 3.1 also allows to apply theorem 4.1. This result is classical, and in fact in
this case one may even show that the dual problem (D) has at least one optimal solution:
indeed the value function v is then de�ned with real values in a neighbourhood of 0, and
since v is convex and nondecreasing it turns out that it is continuous at 0 and thus its
subdi�erential at 0 is not empty so that (D) has optimal solutions (we refer to ch.3 of [3]
for more details). This result was improved by Li [5], where the absence of a duality gap
and existence of an optimal solution to (D) is proven under the constraint quali�cation
sup{dist({h ≤ 0}, {h ≤ ε})/ε : ε > 0} < ∞. This constraint quali�cation is stronger
than property D(0) since this may be satis�ed even if (D) has no optimal solution as
noted below.

• When each of the functions fi is either weakly analytic or belongs to F , then once again
h satis�es property D(0) as a consequence of proposition 3.4. The fact that there is no
duality gap in this case generalizes previous results by Auslender [1], Kummer [4] and
Rockafellar [7]. In [1], it is assumed that all the functions involved in (P0) belong to
F and that they have the same domain, as a counterpart the author not only proves
that there is no duality gap but also that the in�mum in (P0) is attained. Notice that
on the one hand there is no continuity assumption made upon the constraint functions
fi in [1] (while this is assumed in proposition 3.4), but on the other hand there is a
regularity assumption made on every function f and fi (that should all belong to F).
In [7], it is shown that there is no duality gap under the hypothesis that every function
involved in (P0) is continuous and faithfully convex (which is a little stronger than weakly
analytic), and this result was improved in [4] where it is only assumed that the constraint
functions fi are weakly analytic. Proposition 3.4 thus allows to mix the classes F and
that of weakly analytic functions and still ensures that there is no duality gap.

• If one takes the single constraint h := g − 1 where g is the Du�n's function given by
(2.1), then f1 satis�es D(0) (thanks to proposition 3.1) whereas one may observe that
the diameter of the sets {f1 ≤ ε} \ {f1 ≤ 0} is +∞ for any positive ε, so that property
D(0) does not imply the convergence of the sets {f1 ≤ ε} to {f1 ≤ 0}.

Besides the duality gap, another important question concerning (P0) and (D) is that of the
existence of Lagrange multipliers, i.e. of optimal solutions to the dual problem (D). The following
example, given in [6], shows that Lagrange multipliers may not exist even if there is no duality
gap. Let the convex continuous functions f , f1 and f2 be de�ned on R2 by f(x1, x2) := x1,
f1(x1, x2) := x2 and f2(x1, x2) := x2

1 − x2. The constrained problem we consider is

(P ) Inf {f(x) : f1(x) ≤ 0, f2(x) ≤ 0}
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and its dual problem given by

(D) Sup
{
L(λ1, λ2) := inf{f(x) + λ1f1(x) + λ2f2(x) : x ∈ R2} : λ1 ≥ 0, λ2 ≥ 0

}
.

Since the functions f1 and f2 are quasianalytic, the function max{f1, f2} satis�es property
D(0) so that there is no duality gap between (P ) and (D), and one can indeed check that
inf(P ) = sup(D) = 0. However, the supremum of (D) is not attained since L(λ1, λ2) = −∞
whenever λ1 6= λ2, whereas L(0, 0) = −∞ and L(λ, λ) = − 1

4λ for any λ > 0.
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