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PRINCIPLES OF COMPARISON WITH DISTANCE FUNCTIONS

FOR ABSOLUTE MINIMIZERS.
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Abstract. We extend the principle of comparison with cones introduced by Crandall,
Evans and Gariepy in [12] for the Minimizing Lipschitz Extension Problem to a wide
class of supremal functionals. This gives a geometrical characterization of the absolute
minimizers (optimal solutions whose minimality is local). Some application to the
stability of absolute minimizers with respect to the Γ-convergence is given. A variation
of the basic idea also allows to characterize the minimal Lipschitz extensions in length
metric spaces.
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1. Introduction

In this paper we study the following problem

min
{

ess.sup
x∈Ω

H(x,Dv(x)) : v ∈ g +W 1,∞(Ω) ∩ C0(Ω)
}
, (1.1)

where Ω is a connected and bounded open subset of RN , H satis�es the natural as-
sumptions to have the measurability of H(., Dv(.)) for all v ∈ W 1,∞(Ω), g is a map in
W 1,∞(Ω) ∩ C(Ω).

This is a relevant class of variational problems associated with supremal functionals
(see for example [15]). This type of functionals has received in the last few years a lot
of attention because of many applications (see the bibliography of [1] for more details).
A peculiarity of supremal functionals is the distinction between minimizers (de�ned as
usually) and a class of particular minimizers, called absolute minimizers, de�ned as it
follows:

De�nition 1.1. An absolute minimizer for (1.1) is a function u ∈W 1,∞(Ω)∩C(Ω) such
that u = g on ∂Ω and for all open subset V ⊂⊂ Ω one has

ess.sup
x∈V

H(x,Du(x)) ≤ ess.sup
x∈V

H(x,Dv(x))

for all v in W 1,∞(V ) ∩ C(V ) such that v = u on ∂V .

We recall that V ⊂⊂ Ω means that V ⊂ Ω, i.e. V is relatively compact in Ω.
Notice that in the above de�nition, we restrict ourselves to the open subsets V which
are relatively compact in Ω, which is the common de�nition for absolute minimizers (see
[1]), but we do not assume that u is a minimizer of (1.1) which is in fact a consequence of
this de�nition (see Lemma B.1 in the appendix). The existence of minimizers as well as
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absolute minimizers for problem (1.1) holds under mild assumptions, see [3, 4, 9]. Unlike
usual minimizers of the problem (1.1), the absolute minimizer may be characterized as
the unique solution of an associated PDE in the viscosity sense when the supremand
H is smooth enough and satis�es some strict level convexity assumptions (we refer to
[4, 10, 18]).

For the basic supremal functional

u 7→ ‖Du‖L∞(Ω) = ess.sup
x∈Ω

|Du(x)| (1.2)

where the supremand is H : (x, p) 7→ |p|, the absolute minimizers are also character-
ized by a geometric property introduced in [12] and called principle of comparison with
cones. The principle of comparison with cones permitted some understanding toward the
regularity of absolute minimizers of (1.2), also called ∞-harmonic functions. Using the
principle of comparisons with cones it was recently proved in [20] that in 2 dimensions
∞-harmonic functions are C1.

The aim of this paper is to provide a characterization of absolute minimizers of (1.1)
through a generalized version of the Comparison with Cones that will be called Compar-
ison with Distance Functions (see De�nition 3.3 in �3). In fact, the �distance functions�
we deal with are pseudo-distances whose de�nition involves the sublevel sets of H as
well as the paths included in the open subsets V ⊂ Ω on which they are de�ned (see
De�nitions 2.3 and 2.5 in �2). Indeed, since the supremands H we consider depend on
the variable x, the distance functions we use for the comparison must depend on the
subset V on which that comparison holds (see Theorem 2.11 in �2).

The usual Comparison with Cones property for absolute minimizers of (1.2) as given
in [1] is mainly based on the following fact. Let V ⊂ Ω \ {x0} be open and consider the
cone u : x 7→ a|x − x0| + b. If we denote by Lip(u, ∂V ) the Lipschitz constant of u on
∂V , then the maximal MacShane-Whitney extension u+ of u from ∂V to V , given by

u+ : x 7→ inf{u(y) + Lip(u, ∂V )|x− y| : y ∈ ∂V },

is equal to u on V . In the same spirit, the main tool of our Comparison with Distance
Functions is to use the fact that, for any open subsets V ⊂ Ω and U ⊂⊂ V , one can
still compare the distance function associated with H and V and its natural MacShane-
Whitney extension on U (see Remark 2.12 in �2 and Proposition 3.1 in �3).

We show in �6 that the Comparison with Distance Functions may be adapted to the
setting of length spaces (see De�nition 6.2) and still characterizes absolute minimizers.
We point out that our de�nition of Comparison with Distance Functions, when written
in the special case of problem (1.2), suggests that when de�ning the Comparison with
Cones from Above (see De�nition 2.2 in [1]) one should consider cones x 7→ a|x−x0|+ b
with a non-negative coe�cient a (see Remark 6.3). This remark, in fact, ensures that
our characterization for absolute minimizers holds even in the length space setting.

The importance of the relation between the supremal functional in (1.1) and the in-
trinsic distances associated with H was recently observed by many authors. In particular
in [17], under the assumptions of homogeneity of H with respect to the gradient variable,
the authors use the intrinsic distance function to characterize the relaxation of a supre-
mal functional. In [16] for a C2 supremand H which does not depend on x a comparison



COMPARISON WITH DISTANCE FUNCTIONS FOR ABSOLUTE MINIMIZERS 3

principle similar to the one we introduce here is investigated (see in particular section
4).

As �nal remark let us recall that we deal with an irregular function H then a-priori
one cannot expect that the absolute minimizers are solutions of a PDE (see Example
3.2).

The paper is organized as follows: in section �2, we de�ne the distances we use in
the sequel and give a �rst upper-bound and lower-bound result for optimal solutions of
problem (1.1) using these distances (see Theorem 2.11). Section �3 is devoted to the
de�nition of the Comparison with Distance Functions (see De�nition 3.3) and the main
result of the paper, Theorem 3.5, that is the characterization of the absolute minimizers
of problem (1.1) through the Comparison with Distance Functions. In section �4, we
observe that when the supremand H satis�es some strict monotonicity in its second
variable, it is possible to somewhat simplify the CDF, and thus to recover the classical
notion of comparison with cones. We then apply the CDF characterization in �5 to
the problem of stability of absolute minimizers with respect to the Γ−convergence of
supremal functionals (see Theorems 5.1 and 5.3). We also show in section �6 that the
Comparison with Distance Functions is easily adapted to the setting of length spaces and
also allows to characterize the Absolutely Minimizing Lipschitz functions (see Theorem
6.4). In this paper, the concept of Finsler metrics plays an important role so we report
some basic results in the Appendix A. The Appendix B is devoted to some technical
results concerning the notions introduced in section �2.

2. Preliminary results

Throughout this work, we assume the following:

(A) H ≥ 0, H(·, 0) = 0 and H(x, ·) is quasi-convex.
(B) H satis�es the following growth condition: (x, p) 7→ H(x, p) is uniformly (with

respect to x) coercive in p, which means

∀λ ≥ 0 ∃M ≥ 0 ∀(x, p) ∈ Ω× RN H(x, p) ≤ λ ⇒ |p| ≤M.

(C) The map (x, p) 7→ H(x, p) is lower semi-continuous on Ω× RN .

We recall that H(x, ·) quasi-convex means that any sublevel set {H(x, ·) ≤ λ} is
convex. The hypotheses (A),(B) and (C) are rather standard and ensure the existence
of absolute minimizers for problems of the type (1.1) (see [3, 4, 9]).

We now introduce the quasi-convex conjugate of H:

De�nition 2.1. For any x ∈ Ω and λ ≥ 0, we de�ne L(x, ·, λ) on RN by

L(x, q, λ) := sup
{
p · q : p ∈ RN , H(x, p) ≤ λ

}
.

Notice that L(x, q, λ) ≥ 0 for any (x, q, λ) ∈ Ω × RN × R+, that it is positively
1-homogeneous and convex in q and that L(·, ·, λ) is measurable (by the upper semi-
continuity w.r.t. x and the convexity w.r.t. to q, see appendix A). A function with
such properties (for any �xed λ) is usually called a Finsler metric in Ω. We refer to the
appendix for more about Finsler metrics and the associated distances.
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De�nition 2.2. For any connected open subset V ⊂ Ω and any x, y ∈ V , we set

pathV (x, y) :=
{
ξ ∈W 1,∞(]0, 1[, V ) ∩ C([0, 1], V ) : ξ(0) = x, ξ(1) = y

}
.

In the case V = Ω, we simply write pathΩ(x, y) = path(x, y).

We notice that since V is open and connected, pathV (x, y) is nonempty for any x, y ∈
V . For further use, we recall the de�nition of the usual geodesic distance in V as given
in [18] (see De�nition 1.3 therein).

De�nition 2.3. For any connected open subset V ⊂ Ω and any x, y ∈ V , we de�ne the
metric distance dV (x, y) by

dV (x, y) := inf
{∫ 1

0
|ξ̇(t)|dt : ξ ∈ pathV (x, y)

}
.

and for any x, y ∈ V we set

dV (x, y) := inf
{

lim inf
n→+∞

dV (xn, yn) : (xn)n, (yn)n ∈ V N and xn → x, yn → y

}
.

In the case V = Ω, we simply write dΩ(x, y) = d(x, y).

Remark 2.4. In the following, the usual distance between x and y in RN shall be denoted
by |x − y|, and the induced distance between a point x and a set A will be denoted by
dist(x,A).

By analogy with the de�nition above, we now introduce a family of pseudo-distances
on the connected open subsets of Ω associated with H.

De�nition 2.5. For any connected open subset V ⊂ Ω and any x, y ∈ V and any λ ≥ 0,
we set

dVλ (x, y) := inf
{∫ 1

0
L(ξ(t), ξ̇(t), λ)dt : ξ ∈ pathV (x, y)

}
,

and for any x, y ∈ V and any λ ≥ 0, we set

dVλ (x, y) := inf
{

lim inf
n→+∞

dVλ (xn, yn) : (xn)n, (yn)n ∈ V N and xn → x, yn → y

}
.

In the case V = Ω, we simply write dΩ
λ (x, y) = dλ(x, y).

Remark 2.6. We point out here that since the boundary of V is not necessarily regular,
one may have dVλ (x̃, y) = +∞ for some x̃ ∈ ∂V and y ∈ V : in this case, dVλ (x̃, y) = +∞
for any y ∈ V due to the connectedness of V .

We notice that λ 7→ dVλ is non-decreasing, that dVλ is not a priori symmetric, but that
it satis�es the triangular inequality

∀x, y ∈ V , ∀z ∈ V dVλ (x, y) ≤ dVλ (x, z) + dVλ (z, y). (2.1)

The above inequality may be false for z ∈ ∂V since we made no hypothesis on the
regularity of the boundary of V . The same remarks hold for dV .

We now establish a link between the usual notion of Lipschitz continuity on V ⊂ Ω
with respect to that induced by the pseudo-distance dVλ .
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Lemma 2.7. Let V be a connected open subset of Ω. Assume that u : V → R satis�es

∀x, y ∈ V u(y)− u(x) ≤ dVλ (x, y)

for some λ ≥ 0. Then u belongs to W 1,∞(V ) ∩ C(V ).
If moreover u belongs to C(∂V ) and the inequality holds for x, y ∈ V , then u ∈

W 1,∞(V ) ∩ C(V ).

Proof. It is su�cient to prove this in the case V = Ω. Thanks to (B), there existsM > 0
such that {H(x, .) ≤ λ} is included in the Euclidean ball B(0,M) for any x in Ω, so that
L(x, q, λ) ≤ M |q| for any x ∈ Ω and q ∈ RN . As a consequence, dλ(x, y) ≤ M |y − x|
for any x, y ∈ Ω such that the segment ]x, y[ is included in Ω. Let W ⊂⊂ Ω, if δ > 0
denotes the distance from W to ∂Ω, one then has

∀x, y ∈W with |y − x| ≤ δ u(y)− u(x) ≤M |x− y|
so that u is continuous onW and ‖Du‖L∞(W ) ≤M , and since this holds for anyW ⊂⊂ Ω
we infer that u belongs to W 1,∞(Ω) ∩ C(Ω).

Now assume that u ∈ C(∂Ω), it remains to prove that u(xn)→ u(x) for any sequence
(xn)n of points in Ω converging to some x ∈ ∂Ω. The following argument is borrowed
from the proof of Theorem 1.8 in [18]. Let (xn)n be such a sequence, and denote by yn
a projection of xn on ∂Ω for the usual norm, then

|u(xn)− u(x)| ≤ |u(xn)− u(yn)|+ |u(yn)− u(x)|
≤ max{dλ(xn, yn), dλ(yn, xn)}+ |u(yn)− u(x)|
≤ M |xn − yn|+ |u(yn)− u(x)|.

Since x ∈ ∂Ω, one has |xn− yn| ≤ |xn−x| so that yn → x, and since u ∈ C(∂Ω) we infer
that |u(yn)− u(x)| → 0, which concludes the proof. �

Remark 2.8. The triangular inequality (2.1) yields that

∀x, y ∈ V dVλ (x0, y)− dVλ (x0, x) ≤ dVλ (x, y)

for any connected open subset V ⊂ Ω, any λ ≥ 0 and x0 ∈ V . Thus Lemma 2.7 also
yields that the function x 7→ dVλ (x0, x) is in W 1,∞(V ) ∩ C(V ). This also holds true

when x0 ∈ ∂V if x 7→ dVλ (x0, x) takes �nite values in V . Notice that since no regularity
hypothesis is made on ∂Ω, even the distance x 7→ dΩ(x0, x) may be discontinuous on ∂Ω.

We now turn to the link between the essential supremum of H(., Du(.)) on V and the
Lipschitzian character of the function u with respect to the pseudo-distance dVλ .

Proposition 2.9. Let V be a connected open subset of Ω. Assume that u ∈W 1,∞(V )∩
C(V ) is such that H(·, Du(·)) ≤ λ a.e. on V for some λ ≥ 0. Then for any x, y ∈ V one
has u(y)− u(x) ≤ dVλ (x, y).

Moreover, if u ∈ C(V ) then u(y)− u(x) ≤ dVλ (x, y) holds for any x, y ∈ V .

Proof. The �rst claim follows directly from Lemma B.3 of the appendix.
When u ∈ C(V ), the �nal claim follows from the de�nition of dVλ by taking the liminf

in u(yn)− u(xn) ≤ dVλ (xn, yn) with xn, yn ∈ V for all n and xn → x, yn → y. �

The converse holds true:
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Proposition 2.10. Let V be a connected open subset of Ω. Assume that u : V → R is
such that for some λ ≥ 0, u(y)−u(x) ≤ dVλ (x, y) for any x, y ∈ V . Then H(·, Du(·)) ≤ λ
a.e. on V .

Proof. It is su�cient to prove this in the case V = Ω. We �rst infer from Lemma 2.7
that u belongs to W 1,∞(Ω) ∩ C(Ω), so that it is locally Lipschitz continuous on Ω. As a
consequence, u is almost everywhere di�erentiable on Ω, and it is su�cient to show that
H(·, Du(·)) ≤ λ for any x ∈ Ω at which u is di�erentiable.

Let thus x ∈ Ω be such that u is di�erentiable at x, then for any q ∈ RN one has

∇u(x) · q = lim inf
h→0

u(x)− u(x− hq)
h

≤ lim inf
h→0

dλ(x− hq, x)
h

.

For h > 0 small enough, the function ξ : [0, 1] → RN given by ξ(t) := x − hq + thq
belongs to path(x− hq, x), so that

dλ(x− hq, x)
h

≤
∫ 1

0

1
h
L(x+ (1− t)hq, hq, λ)dt =

∫ 1

0
L(x+ (1− t)hq, q, λ)dt.

If for any h > 0 we set fh(t) := sup{L(x + (1 − t)h′q, q, λ) : 0 < h′ ≤ h}, then the
family (fh)h>0 converges to lim suph→0 L(x + (1 − t)hq, q, λ) pointwise. By hypothesis
(B) each fh is dominated by M |q| for some constant M , so that Lebesgue's dominated
convergence theorem yields

lim inf
h→0

dλ(x− hq, x)
h

≤ lim
h→0

∫ 1

0
fh(t)dt =

∫ 1

0
lim sup
h→0

L(x+ (1− t)hq, q, λ)dt

≤
∫ 1

0
L(x, q, λ)dt = L(x, q, λ)

the last inequality holding thanks to Lemma B.2. Therefore, ∇u(x) · q ≤ L(x, q, λ) for
any q ∈ RN and thus ∇u(x) belongs to the closed convex set {H(x, ·) ≤ λ}. �

We now enlight the fundamental link between the pseudo-distances dλ and the problem
(1.1), which is a generalization of Lemma 1.6, Theorem 1.8 and the remark following that
Theorem in [18].

Theorem 2.11. Let V be a connected open subset of Ω, and consider the problem

(P ) min
{
F (v, V ) := ess.sup

x∈V
H(x,Dv(x)) : v ∈W 1,∞(V ) ∩ C(V ), v = g on ∂V

}
,

where g is a function in W 1,∞(V ) ∩ C(V ). Then the minimal value of this problem is

µ := min
{
λ : g(y)− g(x) ≤ dVλ (x, y) for any x, y ∈ ∂V

}
.

Moreover, the functions S−(g, V ) and S+(g, V ) given on V by

∀x ∈ V S−(g, V )(x) := sup{g(y)− dVµ (x, y) : y ∈ ∂V }

∀x ∈ V S+(g, V )(x) := inf{g(y) + dVµ (y, x) : y ∈ ∂V }
are optimal solutions of (P ) and for any optimal solution u of (P ) one has

∀x ∈ V S−(g, V )(x) ≤ u(x) ≤ S+(g, V )(x) (2.2)
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Notice that the minimal value µ for problem (P ) is �nite since g ∈W 1,∞(V ) ∩ C(V ).

Remark 2.12. In the above statement one may take V = Ω, so that this theorem provides
a lower-bound and an upper-bound for the solutions of problem (1.1). The functions S+

and S− are obtained by analogy with the MacShane-Whitney operator (we refer to the
introduction of [1] for more about this operator). We also attract the attention of the
reader on the fact that in the expression of S+ it appears dVµ (y, x) while in S− there is

dVµ (x, y): as dVµ is not symmetric, this is an important fact.

Proof. It is su�cient to prove this in the case V = Ω. We �rst notice that the minimum
µ need not a priori be attained, so that we shall at �rst set

µ := inf {λ : g(y)− g(x) ≤ dλ(x, y) for any x, y ∈ ∂Ω}
as well as

∀x ∈ Ω S−(x) := sup{g(y)− dλ(x, y) : λ > µ, y ∈ ∂Ω},
∀x ∈ Ω S+(x) := inf{g(y) + dλ(y, x) : λ > µ, y ∈ ∂Ω}.

We �rst claim that S−(x) = g(x) for any x ∈ ∂Ω. Indeed, taking y = x in the de�nition
of S− yields S−(x) ≥ g(x), while by de�nition of µ one has g(y) − dλ(x, y) ≤ g(x) for
any λ > µ and y ∈ ∂Ω, so that S−(x) ≤ g(x), which in turns proves the claim. The
same holds for S+.

We now prove that for any σ > µ and x, y ∈ Ω one has

S−(y)− S−(x) ≤ dσ(x, y).

Indeed, take σ > µ, x ∈ Ω and y ∈ Ω. We notice that since λ 7→ dλ is non decreasing,
the supremum in the de�nition of S− can be taken for λ ∈ ]µ, σ] instead of λ > µ, so
that

S−(y)− S−(x) = sup
z∈∂Ω,σ≥λ>µ

inf
z′∈∂Ω,σ≥λ′>µ

{g(z)− dλ(y, z)− g(z′) + dλ′(x, z′)}

≤ sup
z∈∂Ω,σ≥λ>µ

{g(z)− dλ(y, z)− g(z) + dλ(x, z)}

≤ sup
σ≥λ>µ

{dλ(x, y)} = dσ(x, y)

where we have applied inequality (2.1) which holds since y ∈ Ω.
When y ∈ ∂Ω, we notice that S−(y) = g(y) and S−(x) ≥ g(y)− dσ(x, y) so that the

claim also holds. The corresponding estimate also holds for S+.
Since g is continuous on ∂Ω, we infer from the two preceding claims and Lemma 2.7

that S− and S+ belong to g +W 1,∞(Ω) ∩ C0(Ω). Moreover, it follows from Proposition
2.10 that F (S−,Ω) ≤ σ for any σ > µ, so that F (S−,Ω) ≤ µ. Applying now Proposition
2.9 yields that

S−(y)− S−(x) ≤ dµ(x, y)

for any x, y ∈ Ω, and since S− = g on ∂Ω this implies that the in�mum in the de�nition
of µ is attained.

Now the same arguments as above yield that S−(g,Ω) and S+(g,Ω) are admissible
for problem (P ) and that F (S−(g,Ω),Ω) ≤ µ, so that the minimal value inf(P ) for
problem (P ) is lower than µ. We claim that inf(P ) = µ: by contradiction, assume that
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an admissible function u ∈ g+W 1,∞(Ω)∩C0(Ω) is such that F (u,Ω) ≤ λ for some λ < µ.
Then Proposition 2.9 yields that u(y)−u(x) ≤ dλ(x, y) for any x, y ∈ Ω, and since u = g
on ∂Ω this contradicts the de�nition of µ. As a consequence, inf(P ) = µ and S−(g,Ω)
and S+(g,Ω) are optimal solutions of (P ).

Finally, if u is an optimal solution of (P ), one has H(·, Du(·)) ≤ µ a.e. on Ω so that
by Proposition 2.9 one gets u(y) − u(x) ≤ dµ(x, y) for any x, y ∈ Ω. If x ∈ Ω, this
yields g(y)− dµ(x, y) ≤ u(x) for any y ∈ ∂Ω so we infer S−(g,Ω)(x) ≤ u(x). The same

argument yields the estimate u ≤ S+(g,Ω) on Ω, which concludes the proof of (2.2). �

3. The comparison with distance functions

In the following Proposition, we relate the distance functions dVλ (x0, ·) + α associated
with H with the upper and lower solutions given in Theorem 2.11.

Proposition 3.1. Let V be a connected open subset of Ω, and U be a connected open
subset of V such that U ⊂⊂ V and x0 ∈ V \U . Then for any λ ≥ 0 and α ∈ R, one has

dVλ (x0, ·) + α ≥ S+(dVλ (x0, ·) + α,U) on U,

and
−dVλ (·, x0) + α ≤ S−(−dVλ (·, x0) + α,U) on U.

Proof. It is su�cient to prove the �rst inequality in the case V = Ω. We notice that by
the connectedness of Ω either dλ(x0, .) is identically +∞ on Ω (see Remark 2.6), or it is
Lipschitz continuous on U (see Remark 2.8). In the �rst case there is nothing to prove,
so we turn to the second case. We infer from Theorem 2.11 that for all x in U :

S+(dλ(x0, .) + α,U)(x) := inf{α+ dλ(x0, y) + dUµ (y, x) : y ∈ ∂U}

where µ = min
{
σ : dλ(x0, y)− dλ(x0, x) ≤ dUσ (x, y) for any x, y ∈ ∂U

}
. We observe

that µ ≤ λ because by (2.1) we have that for all x, y ∈ ∂U , dλ(x0, y) − dλ(x0, x) ≤
dλ(x, y), and since pathU (x, y) ⊂ path(x, y) one has dλ(x, y) ≤ dUλ (x, y). Then

S+(dλ(x0, .) + α,U)(x) ≤ inf{α+ dλ(x0, y) + dUλ (y, x) : y ∈ ∂U} (3.1)

for any x ∈ U . Now �x x ∈ U and δ > 0, and consider a path ξ ∈ path(x0, x) for which

dλ(x0, x) ≥
∫ 1

0
L(ξ(t), ξ̇(t), λ)dt− δ.

Then there exists t ∈ [0, 1[ such that ξ(t) ∈ ∂U and ξ(s) ∈ U for any s > t, so that

dλ(x0, x) ≥
∫ t

0
+
∫ t+ 1

n

t
+
∫ 1

t+ 1
n

L(ξ(t), ξ̇(t), λ)dt− δ

≥ dλ(x0, ξ(t)) + 0 + dUλ (ξ(t+
1
n

), x)− δ

for any n ≥ 1 for which t+ 1
n < 1. Taking the liminf as n go to +∞ yields dλ(x0, x) ≥

dλ(x0, ξ(t)) + dUλ (ξ(t), x)− δ. Taking then y = ξ(t) as a test in (3.1) yields

S+(dλ(x0, .) + α,U)(x) ≤ α+ dλ(x0, ξ(t)) + dUλ (ξ(t), x) ≤ α+ δ + dλ(x0, x).

Letting δ go to zero yields the result. �
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Example 3.2. It may happen that the pseudo-distance function x 7→ dλ(x0, x) is not a
solution of the extension problem

(PU ) min
{
F (v, U) := ess.sup

x∈U
H(x,Dv(x)) : v ∈ dλ(x0, .) +W 1,∞(U) ∩ C0(U)

}
,

where x0 ∈ Ω \ U and U ⊂⊂ Ω is connected and open: in that case, the inequality

dVλ (x0, ·) ≥ S+(dVλ (x0, ·), U)

is strict at some points of U . As a consequence, dλ(x0, .) is intuitively not a solution of
some eikonal equation related to H. As an example, in R2 take Ω = B(0, 2), U = B(0, 1)
and

H(x, p) :=
{

1
2 |p| if x ∈ U
|p| otherwise.

Now consider

(PU ) min
{
F (v, U) :=

1
2
‖Dv‖L∞(U) : v ∈ d1(x0, ·) +W 1,∞(U) ∩ C0(U)

}
where x0 = (1, 0) belongs to U . Then one has F (d1(x0, ·), U) = 2

2 = 1 and

∀x, y ∈ ∂U |d1(x0, y)− d1(x0, x)| ≤ π

2
|y − x|

as well as
∀x, y ∈ U ∀λ ≥ 0 dUλ (x, y) = 2λ|y − x|.

As a consequence of Theorem 2.11 one then infers that the minimal value inf(PU ) of
(PU ) satis�es

inf(PU ) ≤ π

4
< 1 = F (d1(x0, ·), U)

so that d1(x0, ·) is not a solution of (PU ). Notice that the above fact is in contrast to
the case H(x, p) = |p|, for which the geodesic distance x 7→ dλ(x0, x) = λd(x0, x) is an
optimal solution of the extension problem (PU ) for any connected open set U ⊂⊂ Ω
such that x0 /∈ U (we of course assume here that d(x0, .) is �nite on Ω, see Remark 2.6).
Indeed, it is easy to verify that in that case the function λd(x0, .) is a classical solution of
the eikonal equation |∇v| = λ in Ω \ {x0}, then derive that is is a solution of −∆∞v = 0
in Ω \ {x0} and apply Theorems 3.1 and 3.2 of [12].

De�nition 3.3. We shall say that a continuous function u : Ω → R satis�es the Com-
parison with Distance Functions (noted CDF) from above in Ω if and only if for any
connected open subset V ⊂⊂ Ω, any x0 ∈ V , any λ ≥ 0 and α ∈ R the inequality

u ≤ dVλ (x0, .) + α on ∂(V \ {x0})
implies

u ≤ dVλ (x0, .) + α on V .

Similarly, a continuous function u : Ω → R satis�es the CDF from below on Ω if and
only if the inequality

u ≥ −dVλ (., x0) + α on ∂(V \ {x0})
implies

u ≥ −dVλ (., x0) + α on V .
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Finally, a continuous function u : Ω → R satis�es the Comparison with Distance Func-
tions on Ω if and only if it satis�es the CDF both from above and from below on Ω.

Remark 3.4. The notion of Comparison with Distance Functions is a generalization of
that of Comparison with Cones appearing in [12]. However, even for the classical case
where H : (x, p) 7→ |p| is the euclidean norm the above notion is di�erent from that
introduced in [12]: indeed that paper deals with the comparison with the usual cones
x 7→ λ|x− x0|, while our notion leads to the comparison with the cones x 7→ λdV (x0, x)
(where dV (·, ·) is the usual geodesic distance in V , see De�nition 2.3). This is overcomed
in section 4, see Remark 4.4.

We now state and prove the main result of the paper.

Theorem 3.5. Let u ∈W 1,∞(Ω) ∩ C(Ω). Then u is an absolute minimizer of

(P ) min
{
F (v,Ω) := ess.sup

x∈Ω
H(x,Dv(x)) : v ∈ g +W 1,∞(Ω) ∩ C0(Ω)

}
if and only if u = g on ∂Ω and u satis�es the Comparison with Distance Functions on
Ω.

Proof. We �rst prove the only if part, that is if u is an absolute minimizer of (P ) then it
satis�es the CDF from above on Ω (the argument is the same for the CDF from below).
Let thus V be an open, connected subset of Ω relatively compact in Ω, x0 ∈ V , λ ≥ 0
and α ∈ R be such that

u ≤ dVλ (x0, .) + α on ∂(V \ {x0}).

We shall assume that dVλ (x0, .) is not uniformly +∞ on V , so that is is Lipshitz continuous
in V . Let (εk)k be a sequence of positive numbers decreasing to 0. De�ne αk = α + εk
and observe that (αk)k decreases to α and

u < dVλ (x0, .) + αk on ∂(V \ {x0}). (3.2)

Let Uk := {x ∈ V : u(x) > dVλ (x0, .) + αk}. If Uk is empty, there is nothing to prove.

Otherwise, we �rst claim that Uk ⊂⊂ (V \ {x0}). By contradiction, assume that the
sequence (xn)n in Uk converges to some x ∈ ∂(V \ {x0}), then taking the liminf as n
goes to +∞ in u(xn) > dVλ (x0, xn) + αk yields

u(x) ≥ dVλ (x0, x) + αk,

and since x ∈ ∂(V \ {x0}), this obviously contradicts (3.2).
Now since Uk ⊂⊂ (V \ {x0}) and u and dVλ are continuous on V , we have that Uk

is open, and we may assume that it is connected (otherwise we consider a connected
component). We then claim that

u ≤ S+(dVλ (x0, .) + αk, Uk) on Uk. (3.3)

Indeed, u = dVλ (x0, .) + αk on ∂Uk, and since u is an absolute minimizer of (P ), it is an
optimal solution of

(PUk) min
{
F (v, Uk) : v ∈ dVλ (x0, .) + αk +W 1,∞(Uk) ∩ C0(Uk)

}
.
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Then (3.3) follows from Theorem 2.11, and Proposition 3.1 then allows to conclude that

u ≤ dVλ (x0, .) + αk on Uk,

which obviously contradicts the de�nition of Uk which is then empty for all k. Letting
k go to +∞ we obtain

u ≤ dVλ (x0, .) + α on V

which concludes the proof of the only if part.
We now turn to the if part: assume that u = g on ∂Ω and u satis�es the CDF on Ω.

Let V be an open subset of Ω with V ⊂⊂ Ω, we must prove that u is an optimal solution
of

(PV ) min
{
F (v, V ) : v ∈ u+W 1,∞(V ) ∩ C0(V )

}
.

Thanks to Theorem 2.11, this is equivalent to show that

F (u, V ) = min(PV ) = µ := min
{
λ : u(y)− u(x) ≤ dVλ (x, y) for any x, y ∈ ∂V

}
.

Let x ∈ ∂V , then by de�nition of µ one has

u(y) ≤ u(x) + dVµ (x, y) for any y ∈ ∂(V \ {x})

and since u satis�es the CDF from above this inequality holds for any y ∈ V . Now let
y ∈ V , then we just obtained that

u(x) ≥ u(y)− dVµ (x, y) for any x ∈ ∂(V \ {y})
and since u satis�es the comparison with cones from below this inequality holds for any
x ∈ V . As a consequence, we get

u(y)− u(x) ≤ dVµ (x, y) for any x, y ∈ V .
Proposition 2.10 then yields F (u, V ) ≤ µ, which concludes the proof. �

Remark 3.6. The proof of the if part above is somewhat inspired from the argument of
Proposition 2.1 in [1].

4. Comparison with Global Distance Functions

Dealing with distances which depend on the open set may be technically di�cult. In
this section, under some more regularity assumption on the supremand H (which still
cover a very wide variety of possible supremands) we are able to simplify the results of
section 3 by dealing with distances which do not depend anymore on the open set.

De�nition 4.1. We shall say that a continuous function u : Ω→ R satis�es the Compar-
ison with Global Distance Functions (noted CGDF) from above in Ω if for any connected
open subset V ⊂⊂ Ω, any x0 ∈ V , any λ ≥ 0 and α ∈ R the inequality

u ≤ dΩ
λ (x0, .) + α on ∂(V \ {x0})

implies

u ≤ dΩ
λ (x0, .) + α on V .

Similarly, a continuous function u : Ω → R satis�es the CGDF from below on Ω if the
inequality

u ≥ −dΩ
λ (., x0) + α on ∂(V \ {x0})
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implies
u ≥ −dΩ

λ (., x0) + α on V .

Finally, a continuous function u : Ω→ R satis�es the Comparison with Global Distance
Functions on Ω if it satis�es the CGDF both from above and from below on Ω.

In order to make the link between the Comparison with Global Distance Functions
and the absolute minimizers, we assume in the rest of this section that the following
regularity property on H holds:

(D) For all λ > µ ≥ 0 and V ⊂⊂ Ω there exists α > 0 such that

∀x ∈ V { H(x, ·) < µ}+B(0, α) ⊂ { H(x, ·) < λ}

Remark 4.2. It is easily infered from this assumption that for any connected open set
V ⊂⊂ Ω and for any λ > µ ≥ 0 one has

∀x 6= y ∈ V dVµ (x, y) < dVλ (x, y).

We now turn to the main theorem of this section.

Theorem 4.3. Assume that (D) holds, and let u ∈ W 1,∞(Ω) ∩ C(Ω). Then u is an
absolute minimizer of

(P ) min
{
F (v,Ω) := ess.sup

x∈Ω
H(x,Dv(x)) : v ∈ g +W 1,∞(Ω) ∩ C0(Ω)

}
if and only if u = g on ∂Ω and u satis�es the Comparison with Global Distance Functions
on Ω.

Remark 4.4. As the proof of the above theorem shows, the CGDF characterization is
obtained via local arguments: every computation is made in some V ⊂⊂ Ω. One could
even therefore replace the pseudo-distances dΩ

λ by the pseudo-distances dRN
λ whenever H

is de�ned on RN × RN , with assumption (D) still holding on Ω. One may in particular
apply this to the case where H does not depend on x: for example, one thus recovers
the usual comparison with cones for the special case H(x, p) = |p|.

Proof of Theorem 4.3. For the only if part, we just notice that the corresponding proof
of Theorem 3.5 still holds when dVλ is replaced with dΩ

λ .
Let us turn to the if part: assume that u = g on ∂Ω and u satis�es the CGDF on

Ω. Let V be a connected open subset of Ω with V ⊂⊂ Ω, we must prove that u is an
optimal solution of

(PV ) min
{
F (v, V ) : v ∈ u+W 1,∞(V ) ∩ C0(V )

}
.

By Theorem 2.11, this is equivalent to show that

F (u, V ) = min(PV ) = µ := min
{
λ : u(y)− u(x) ≤ dVλ (x, y) for any x, y ∈ ∂V

}
.

By contradiction, assume that Λ := F (u, V ) > µ. Then there exists x0 ∈ V such that u
is di�erentiable at x0 and

H(x0,∇u(x0)) = λ0 > µ. (4.1)

We �rst claim that for λ = (µ+ λ0)/2 there exists x+∞ ∈ ∂V such that

u(x+∞)− u(x0) ≥ dVλ (x0, x+∞) (4.2)
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where λ = (µ+ λ0)/2. Let M > 1 > α > 0 be such that

B(0, α) ⊂ { H(x, ·) < ν} ⊂ B(0,M)

for all x ∈ V and ν ∈ [µ,Λ].
We de�ne by induction the decreasing sequence (λn)n∈N by λn+1 := (µ+λn)/2 for any

n ≥ 0. Then we infer from (4.1) that there exists x′0 such that |x′0−x0| ≤ α
2M2dist(x0, ∂V )

and

u(x′0) > u(x0) + dVλ1
(x0, x

′
0).

Indeed, one would otherwise have u(x) ≤ u(x0)+dVλ1
(x0, x) for any x ∈ B(x0,

α
2M2dist(x0, ∂V )),

then Proposition 2.10 would imply H(x0,∇u(x0)) ≤ λ1, which contradicts (4.1).
Let us notice that since |x′0−x0| ≤ α

M dist(x0, ∂V ), Lemma B.4 yields that dVλ1
(x0, x

′
0) =

dΩ
λ1

(x0, x
′
0). We may now apply Lemma 4.5 below to build by induction starting from

x0 a sequence (xn)n∈N in V such that

• for any n ∈ N, one has

α2

2M2
dist(xn, ∂V ) ≤ |xn+1 − xn| ≤

α

2M
dist(xn, ∂V ),

• for any n ∈ N, one has

u(xn+1) ≥ u(xn) + dΩ
λn+1

(xn, xn+1),

• for any n ∈ N, xn ∈ V and there exists x′n ∈ V such that

|x′n − xn| ≤
α2

2M2
dist(xn, ∂V ) and u(x′n) > u(xn) + dΩ

λn+1
(xn, x′n).

Applying once again Lemma B.4 yields that in the preceding, dVλn = dΩ
λn
, so that the

sequence (xn)n∈N is such that for any n ≥ 0, one has

|xn+1 − xn| ≥
α2

2M2
dist(xn, ∂V ) and u(xn+1) ≥ u(xn) + dVλn+1

(xn, xn+1).

This yields that for any n ∈ N

u(xn+1)− u(xn) ≥ dVλ (xn, xn+1) ≥ α3

2M2
dist(xn, ∂V ).

We now conclude as in the proof of Theorem 3.2 of [12]: for any n ∈ N one has

u(xn+1)− u(x0) ≥
n∑
i=0

dVλ (xi, xi+1) ≥ α3

2M2

n∑
i=0

dist(xi, ∂V ) ≥ 0.

Since u is continuous on Ω, it is bounded on V , and thus dist(xn, ∂V )→ 0 as n→ +∞.
Let x+∞ be a cluster point of (xn)n, then x+∞ ∈ ∂V and taking the liminf as n goes to
+∞ in

u(xn+1)− u(x0) ≥
n∑
i=0

dVλ (xi, xi+1) ≥ dVλ (x0, xn+1)

one gets (4.2), which proves the claim.
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A similar argument (which relies on the use of Lemma 4.6) yields the existence of
some x−∞ ∈ ∂V such that

u(x0)− u(x−∞) ≥ dVλ (x−∞, x0). (4.3)

We �nally infer from (4.2) and (4.3) that for the points x+∞, x−∞ ∈ ∂V it holds

u(x+∞)− u(x−∞) ≥ dVλ (x0, x+∞) + dVλ (x−∞, x0) ≥ dVλ (x−∞, x+∞).

By Remark 4.2, we then get

u(x+∞)− u(x−∞) ≥ dVλ (x−∞, x+∞) > dVµ (x−∞, x+∞),

which contradicts the de�nition of µ. �

The following Lemma is inspired from Lemmas 2.4 and 3.3 of [12]. Notice that in
its proof, we only use that u satis�es the CGDF from above. For the notations and
hypotheses, we refer to Theorem 4.3.

Lemma 4.5. Assume that x ∈ V is such that there exist ν ∈ ]µ,Λ] and x′ ∈ V such that

|x′ − x| ≤ α2

2M2dist(x, ∂V ) and

u(x′) > u(x) + dΩ
ν (x, x′).

Then for any θ ∈ ]µ, ν[ there exist y and y′ in V such that

• α2

2M2dist(x, ∂V ) ≤ |y − x| ≤ α
2M dist(x, ∂V ),

• u(y) ≥ u(x) + dΩ
θ (x, y),

• |y′ − y| ≤ α2

2M2dist(y, ∂V ) and u(y′) > u(y) + dΩ
θ (y, y′).

Proof. Set R := α2

2M dist(x, ∂V ), let θ ∈ ]µ, ν[ , θ′ ∈ ]θ, ν[ and de�ne

a := max{u(z)− dΩ
θ′(x, z) : z such that dΩ

θ′(x, z) ≤ R}.

By the de�nition of R, if dΩ
θ′(x, z) ≤ R then

α|z − x| ≤ dΩ
θ′(x, z) ≤ R =

α2

2M
dist(x, ∂V )

so that z ∈ V . Moreover, since x′ is such that

dΩ
θ′(x, x

′) ≤M |x′ − x| ≤M α2

2M2
dist(x, ∂V ) = R,

one has a ≥ u(x′) − dΩ
θ′(x, x

′) ≥ u(x′) − dΩ
ν (x, x′) > u(x). Since u satis�es the CGDF

from above on Ω and dΩ
θ′(x, ·) is continuous on V , one has

a = max{u(z)− dΩ
θ′(x, z) : z = x or z such that dΩ

θ′(x, z) = R},

and we infer from dΩ
θ′(x, x

′) ≤ R that

a = max{u(z)− dΩ
θ′(x, z) : z such that dΩ

θ′(x, z) = R} > u(x).

Let now y be such that dΩ
θ′(x, y) = R and u(y)− dΩ

θ′(x, y) = a. Then y ∈ V , and one has

M |y − x| ≥ dΩ
θ′(x, y) = R so that |y − x| ≥ α2

2M2
dist(x, ∂V )
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as well as

α|y − x| ≤ dΩ
θ′(x, y) = R so that |y − x| ≤ α

2M
dist(x, ∂V )

and
u(y) = dΩ

θ′(x, y) + a > dΩ
θ′(x, y) + u(x) ≥ dΩ

θ (x, y) + u(x).

Now, set r = α3

2M2dist(y, ∂V ). By Lemma B.5, for any ε ∈ ]0, 1[ there exists yε such that

|yε − y| = εmin{ rM ,
|y−x|

2 } and

dΩ
θ′(x, y) = dΩ

θ′(x, yε) + dΩ
θ′(yε, y).

As a consequence, dΩ
θ′(x, yε) ≤ R so that

u(yε)− dΩ
θ′(x, yε) ≤ a = u(y)− dΩ

θ′(x, y)

= u(y)−
(
dΩ
θ′(x, yε) + dΩ

θ′(yε, y)
)
.

We thus have
u(yε) ≤ u(y)− dΩ

θ′(yε, y). (4.4)

Take θ′′ ∈ ]θ, θ′[ and de�ne

b := max{u(z)− dΩ
θ′′(yε, z) : z such that dΩ

θ′′(yε, z) ≤ r}.
We notice that dΩ

θ′′(yε, y) ≤M |yε − y| ≤ r, and by (4.4) and Remark (4.2) we have

b ≥ u(y)− dΩ
θ′′(yε, y) > u(y)− dΩ

θ′(yε, y) ≥ u(yε).

The same arguments as above thus yield the existence of some yε such that

dΩ
θ′′(yε, y

ε) = r and u(yε)− dΩ
θ′′(yε, y

ε) = b > u(yε).

Let y′ be a cluster point of the family (yε)ε>0 as ε→ 0, then by passing to the limit in
the above relations, one infers

dΩ
θ′′(y, y

′) = r and u(y′)− dΩ
θ′′(y, y

′) ≥ u(y).

Then one has

|y′ − y| ≤ 1
α
dΩ
θ′′(y, y

′) =
r

α
≤ α2

2M2
dist(y, ∂V )

Finally using once again Remark (4.2) we get

u(y′)− dΩ
θ (y, y′) > u(y′)− dΩ

θ′′(y, y
′) ≥ u(y)

which concludes the proof of the Lemma. �

An analogue of the above Lemma holds, if we require only that u satis�es the CGDF
from below on Ω.

Lemma 4.6. Assume that x ∈ V is such that there exist ν ∈ ]µ,Λ] and x′ ∈ V such that

|x′ − x| ≤ α2

2M2dist(x, ∂V ) and

u(x) > u(x′) + dΩ
ν (x′, x).

Then for any θ ∈ ]µ, ν[ there exist y and y′ in V such that

• α2

2M2dist(x, ∂V ) ≤ |y − x| ≤ α
2M dist(x, ∂V ),

• u(x) ≥ u(y) + dΩ
θ (y, x),
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• |y′ − y| ≤ α2

2M2dist(y, ∂V ) and u(y) > u(y′) + dΩ
θ (y′, y).

5. Stability of absolute minimizers with respect to Γ-convergence

In this part, we show that the notion of absolute minimizer is stable with respect
to Γ-convergence (see Theorem 5.1 below) and then apply this result to the case of the
homogenization in L∞ of supremal functionals. We recall that when X is a metric space,
a sequence of functionals Fn : X → R is said to Γ-converge to F in X if

∀x ∈ X F (x) = Γ− lim inf Fn(x) = Γ− lim supFn(x),

where
Γ− lim inf Fn(x) = inf

{
lim inf Fn(xn) : xn → x in X

}
Γ− lim supFn(x) = inf

{
lim supFn(xn) : xn → x in X

}
.

We refer to [13] for an introduction to the theory of Γ-convergence. We now state the
stability of absolute minimizers with respect to this notion of convergence.

Theorem 5.1. Assume that for any n ∈ N, the function un ∈ W 1,∞(Ω) ∩ C(Ω) is an
absolute minimizer of the problem

(Pn) min
{

ess.sup
x∈Ω

Hn(x,Dv(x)) : v ∈ un +W 1,∞(Ω) ∩ C0(Ω)
}
,

and that the sequence (un)n∈N converges uniformly on Ω to some function u∞ ∈W 1,∞(Ω)∩
C(Ω). For any n ∈ N ∪ {+∞} and relatively compact open subset U ⊂ Ω with boundary
of class C2, we de�ne the supremal functional Fn(., U) on C(U) by

Fn(v, U) :=

{
ess.sup
x∈U

Hn(x,Dv(x)) if v ∈W 1,∞(U) ∩ C(U),

+∞ otherwise,

where the supremand Hn satis�es conditions (A) and (C) for any n ∈ N ∪ {+∞}, and
the family {Hn}n∈N∪{+∞} is uniformly equicoercive on Ω× RN , i.e.

∀λ ≥ 0 ∃M > 0 ∀n ∈ N ∪ {+∞} ∀(x, p) Hn(x, p) ≤ λ⇒ |p| ≤M. (5.1)

Suppose that for any such open subset U the sequence (Fn(., U))n Γ-converges in C(U)
to the supremal functional F∞(., U). Then the function u∞ is an absolute minimizer of

(P∞) min
{

ess.sup
x∈Ω

H∞(x,Dv(x)) : v ∈ u∞ +W 1,∞(Ω) ∩ C0(Ω)
}
.

We �rst prove the following Lemma, which in our opinion has an interest by itself.
For a connected open subset V ⊂ Ω, λ ≥ 0 and n ∈ N ∪ {+∞}, we shall denote by dVλ,n
the pseudo-distance in V associated with the supremand Hn.

Lemma 5.2. Under the assumptions of Theorem 5.1, for any U ⊂⊂ Ω with boundary
of class C2, any µ ≥ 0 and x ∈ U , there exists a sequence of non-negative real numbers
(µn)n such that

dUµn,n(x, .)→ dUµ,∞(x, .) in C(U). (5.2)
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Proof. We infer from Lemma B.3 that for any y ∈ U one has

dUµ,∞(x, y) = sup{v(y)− v(x) : v ∈W 1,∞(U) ∩ C(U), H∞(., Dv) ≤ µ a.e. on V }
= sup{v(y)− v(x) : F∞(v, U) ≤ µ}.

Since (Fn(., U))n Γ-converges in C(U) to F∞(., U), there exists a sequence of functions
vn ∈W 1,∞(U) ∩ C(U) converging uniformly in U to dUµ,∞(x, .) and such that

Fn(vn, U)→ F∞(dUµ,∞(x, .), U) ≤ µ
where the last inequality follows from Proposition 2.10. For any n we set Fn(vn, U) = µn
and we prove (5.2) for the sequence (µn)n. It follows again from Lemma B.3 that for
any n and y ∈ U one has

dUµn,n(x, y) = sup{v(y)− v(x) : Fn(v, U) ≤ µn}
≥ vn(y)− vn(x),

thus letting n go to +∞ yields

∀y ∈ U lim inf
n→+∞

dUµn,n(x, y) ≥ dUµ,∞(x, y).

We also notice that by the uniform equicoercivity assumption (5.1), the regularity of
∂U and the fact that dUµn,n(x, x) = 0 for any n, the family (dUµn,n(x, .))n is uniformly

bounded and equicontinuous on U and thus we may assume without loss of generality
that it converges in C(U) to some function w. We infer from the Γ-convergence of Fn(., U)
that

F∞(w,U) ≤ lim inf
n→+∞

Fn(dUµn,n(x, .), U) ≤ lim inf
n→+∞

µn ≤ µ.

Then for any y in U we have

lim sup
n→+∞

dUµn,n(x, y) = w(y) = w(y)− w(x)

≤ sup{v(y)− v(x) : F∞(v, U) ≤ µ} = dUµ,∞(x, y)

where the last inequality follows by Proposition 2.10 and this concludes the proof. �

Proof of Theorem 5.1. Thanks to theorem 3.5, it is su�cient to prove that u∞ satis�es
the CDF associated with H∞. We only prove that u∞ satis�es the CDF from above,
the argument being similar for the comparison from below. Let then x0 ∈ V , λ ≥ 0 and
α ∈ R be such that

u∞ ≤ dVλ,∞(x0, .) + α on ∂(V \ {x0}).
Let ε > 0 and set W = {x ∈ V : u∞ > dVλ,∞(x0, .) + α + ε}. If W is empty, there
is nothing to prove, otherwise the same arguments as in the proof of Theorem 3.5 yield
thatW is open andW ⊂⊂ V \{x0}. We may also assume without loss of generality that
W is connected. Thus there exists U ⊂⊂ V \ {x0} open, connected, with C2 boundary
and containing W . Then the function dVλ,∞(x0, .) is continuous on U , and we have

u∞(y) ≤ α+ ε+ dVλ,∞(x0, y) = α+ ε+ S+(dVλ,∞(x0, .), U)(y)

for any y ∈ ∂U . We now infer from the de�nition of S+(dVλ,∞(x0, .), U) that

u∞(y) ≤ α+ ε+ dVλ,∞(x0, x) + dUµ,∞(x, y) (5.3)
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for any x, y ∈ ∂U and with

µ = min
{
σ : dVλ,∞(x0, y)− dVλ,∞(x0, x) ≤ dUσ,∞(x, y) for any x, y ∈ ∂U

}
.

Let us now �x x ∈ ∂U in (5.3), we aim to show that this inequality holds for any y in
U . We infer from Lemma 5.2 that there exists a sequence (µn)n such that

dUµn,n(x, .)→ dUµ,∞(x, .) in C(U).

Let δ > 0, we get from (5.3) that for n large enough

∀y ∈ ∂U un(y) ≤ α+ ε+ δ + dVλ,∞(x0, x) + dUµn,n(x, y) (5.4)

Since for all n the function un satis�es the CDF property, the inequality (5.4) holds for
any y ∈ U . Letting n go to ∞ in (5.4), we get that

∀y ∈ U u∞(x) ≤ α+ ε+ δ + dVλ,∞(x0, x) + dUµ,∞(x, y).

We let δ go to 0 and take the in�mum on x ∈ ∂U to get that for any y ∈ U one has

u∞(y) ≤ α+ ε+ inf{dVλ,∞(x0, x) + dUµ,∞(x, y) : x ∈ ∂U}
= α+ ε+ S+(dVλ,∞(x0, .), U)(y).

Applying Proposition 3.1 yields

∀y ∈ U u∞(y) ≤ α+ ε+ dVλ,∞(x0, y),

which contradicts the de�nitions of U and W . �

We now turn to the application of the above result to an homogenization problem. For
any positive ε and V open subset of Ω, let the supremal functional Fε(., V ) be de�ned
on C(V ) by

Fε(v, V ) :=

{
ess.sup
x∈Ω

H(
x

ε
,Dv(x)) if v ∈W 1,∞(V ) ∩ C(V ),

+∞ otherwise,

and let Fhom(., V ) be given by

Fhom(v, V ) :=

{
ess.sup
x∈Ω

Hhom(Dv(x)) if v ∈W 1,∞(V ) ∩ C(V ),

+∞ otherwise,

where for any p ∈ RN one has

Hhom(p) := inf

{
ess.sup
x∈(0,1)N

H(x, p+Dw(x)) : w ∈W 1,∞
# ((0, 1)N ) ∩ C((0, 1)N )

}
.

The following classical assumptions are made on the supremand H:

(A') H : RN × RN → [0,+∞] is lower semi-continuous, (0, 1)N -periodic in the �rst
variable and level-convex in the second, and H(., 0) = 0.

(B') H satis�es the growth condition: α(|p|) ≤ H(x, p) ≤ β(|p|) for any (x, p) ∈
RN × RN , where α, β : R+ → R+ are increasing functions, α(t) → +∞ as
t→ +∞ and β is locally bounded.
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(E) H satis�es the continuity condition: for any M > 0 there exists a function
ω : R+ → R+ with ω(t)→ 0 as t→ 0+ and

∀x ∈ (0, 1)N ∀p, η ∈ B(0,M) |H(x, p)−H(x, η)| ≤ ω(|p− η|).

Then the following holds.

Theorem 5.3. Assume that for any ε > 0, the function uε ∈ W 1,∞(Ω) ∩ C(Ω) is an
absolute minimizer of the problem

(Pε) min
{
Fε(v,Ω) : v ∈ uε +W 1,∞(Ω) ∩ C0(Ω)

}
and that u0 ∈W 1,∞(Ω)∩C(Ω) is a cluster point (as ε→ 0) in C(Ω) of the family (uε)ε>0.
Then u0 is an absolute minimizer of the homogenized problem

(Phom) min
{
Fhom(v,Ω) : v ∈ u0 +W 1,∞(Ω) ∩ C0(Ω)

}
.

Proof. We �rst notice that thanks to hypotheses (A') and (B'), the family of supremands
(H( ·ε , .))ε>0 obviously satis�es conditions (A), (C) and (5.1). To apply theorem 5.1, it

thus remains to prove that for any open subset V ⊂⊂ Ω with C2 boundary the family
(Fε(., V )) Γ-converges to Fhom(., V ) on C(V ) as ε→ 0: this follows from Theorem 5.2 of
[6]. �

6. Absolutely minimizing Lipschitz extensions in length spaces

In this section we show that the principle of Comparison with Distance Functions also
characterizes the absolutely minimizing Lipschitz extensions in a length space (X, d). A
metric space (X, d) is said a length space if it is arcwise-connected and the distance of
any two points coincide with the in�mum of the length of continuous arcs joining them.
More precisely, if x, y ∈ X and if we denote by pathX(x, y) the set of continuous maps
γ : [0, 1]→ X with γ(0) = x and γ(1) = y, then the length l(γ) of γ is given by

l(γ) := sup

{
k∑
i=0

d(γ(ti), γ(ti+1)) : 0 = t0 ≤ . . . ≤ tk = 1, k ≥ 1

}
and (X, d) is a length space if for any x, y ∈ X one has

d(x, y) = inf {l(γ) : γ ∈ pathX(x, y)}

The category of length spaces includes Riemannian manifolds, Carnot-Caratheodory
spaces, as well as more general spaces (see [1] for more on this notion).

We �rst recall the de�nition of an Absolutely minimizing Lipschitz extension in a
length space as given in �9 of [1].

De�nition 6.1. Let (X, d) be a length space, A ⊂ X and u : A→ R, then we set

Lip(u,A) := inf {k : u(y)− u(x) ≤ kd(x, y) for all x, y ∈ A} .

Let V be a proper open subset of X, then a Lipschitz continuous function u : V → R is
said to be an Absolutely Minimizing Lipschitz function (noted AML) on V if for all open
subset U of V one has

Lip(u, U) = Lip(u, ∂U).
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In the above de�nition, proper means that V /∈ {∅, X}, and since X is connected this
implies that ∂V 6= ∅. We now extend the notion of Comparison with Distance Functions
to this setting.

De�nition 6.2. Let (X, d) be a length space and V a proper open subset of X. A
function u : V → R satis�es the Comparison with Distance Functions from above on V
if for any open subset U of V , any x0 ∈ X, any a ≥ 0 and b ∈ R, the inequality

u ≤ ad(x0, .) + b on ∂(U \ {x0})
implies

u ≤ ad(x0, .) + b on U.

Similarly, a continuous function u : Ω → R satis�es the CDF from below on Ω if and
only if the inequality

u ≥ −ad(x0, .) + b on ∂(U \ {x0})
implies

u ≥ −ad(x0, .) + b on U.

Finally, u satis�es the CDF on V if and only if it satis�es the CDF both from above and
from below on V .

Remark 6.3. We point out that in the above de�nition the parameter a is non-negative,
whereas in the classical de�nition (for example see De�nition 2.2 in [1]) a may take
negative values. This is inspired from De�nition 3.3 where the parameter λ is neces-
sarily non-negative. This di�erence allows to show that with the above de�nition, the
comparison with cones is still a characterization for the AML property in this general
length space setting, and rules out the problem arising in Example 9.2 of [1]. Indeed, in
that example the authors consider the case where X is the unit sphere of R3 equipped
with the geodesic distance, x0 is the north pole and V the southern hemisphere. Then
the constant function π

2 is of course an AML in X, and is equal to the cone d1(x0, .) on
∂V . One doesn't have π

2 ≥ d1(x0, .) in V , while π
2 ≤ d1(x0, .) holds in V . The classical

de�nition for the comparison with cones would ask the two inequalities to hold (and thus
fails to characterize the AML property), whereas De�nition 6.2 only asks for the second
inequality to hold.

We now state the main theorem of this part.

Theorem 6.4. Let V be a proper open subset of X, then u : V → R is an AML in V
if and only if u enjoys the Comparison with Distance Functions property.

Proof. The only if part. We only prove that u satis�es the CDF from above on V . Let
U ⊂ V be open, x0 ∈ X, a ≥ 0 and b ∈ R and assume that

u ≤ ad(x0, .) + b on ∂(U \ {x0}).
Assume, by contradiction, that the set A := {x ∈ U : u(x) > ad(x0, x) + b} is not
empty. Then A is open and on ∂A we have u(x) = ad(x0, x)+b. The triangular inequality
implies that Lip(ad(x0, .) + b, ∂A) = α ≤ a, and the maximal Lipschitz extension u+ of
this distance function inside A is

u+ : x 7→ inf
y∈∂A
{ad(x0, y) + b+ αd(y, x)}.
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Since u is an AML on V , one has u ≤ u+ on A. Proceeding as in the proof of Proposition
3.1, we get that u+ ≤ ad(x0, .) + b on A. Indeed, for any x ∈ A one has

u+(x) ≤ inf
y∈∂A
{ad(x0, y) + b+ ad(y, x)}. (6.1)

Let δ > 0, there exists γ ∈ pathX(x0, x) such that d(x0, x) ≥ l(γ) − δ, then taking
tδ ∈ [0, 1] such that x̃ = γ(tδ) ∈ ∂A, one gets d(x0, x) ≥ d(x0, x̃) + d(x̃, x) − δ. Since
a ≥ 0, we infer by taking y = x̃ in (6.1) that u+(x) ≤ ad(x0, x) + b+ aδ. Letting δ go to
0, we �nally get the contradiction.

The if part follows line by line the proof of Proposition 2.1 in [1]. �

Remark 6.5. We point out that in the preceding proof, the geometric idea of the �rst
implication is again the idea of Proposition 3.1, and that this idea is easily adapted to
this length space setting.

Remark 6.6. The previous theorem shows that even in an ambient space in which cones
do not satisfy comparison with cones (for example a sphere or any other manifold with
non trivial cut-locus) the CDF property still characterizes the absolutely minimizing
Lipschitz extension. Then the CDF property provides, in some sense, a structure-free
criterium for absolute minimality.

Appendix A. Finsler metrics and related questions

A Finsler metric on a connected open subset Ω of Rn is a Borel-measurable function
ϕ : Ω×Rn → R+ such that ϕ(x, ·) is positively 1-homogeneous for all x ∈ Ω and convex
for Ln a.e. x ∈ Ω. We refer to [2] for an advanced introduction. We also refer to
the papers [14] for more complete versions of Propositions A.1 and A.2 (respectively
Theorems 3.3 and 3.7 therein).

Given a positive constant β we set

Mβ = {ϕ Finsler metric in Ω s.t. ϕ(x, q) ≤ β|q| in Ω× Rn}.

Then to each ϕ ∈ Mβ one can associate (as we did in section 2) a pseudo distance
dϕ : Ω× Ω→ R+ through the formula

dϕ(x, y) = inf
{∫ 1

0
ϕ(γ(t), γ̇(t))dt : γ ∈ path(x, y)

}
.

There is in the literature another way to associate a distance to a Finsler metric ϕ ∈ Ω
and it consists of a sup− inf operation. We denote by N the set of subsets N of Ω with
Lebesgue measure Ln(N) = 0. A Lipschitz curve γ : [0, 1]→ Ω is said transversal to N
if H1(γ([0, 1]) ∩N) = 0. Then we de�ne

dϕ(x, y) = sup
N∈N

inf
{∫ 1

0
ϕ(γ(t), γ̇(t))dt : γ ∈ path(x, y) and γ transversal to N

}
.

We now introduce the polar of ϕ, ϕ0 : Ω×Rn → R+∪{+∞} which is de�ned as follows:

ϕ0(x, p) := sup{p · q : ϕ(x, q) ≤ 1}.

We then have the following:
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Proposition A.1. The following inequality holds for any x, y ∈ Ω

sup{u(y)− u(x) : u ∈ Lip(Ω), ϕ0(., Du) ≤ 1 a.e.} ≤ dϕ(x, y)

Proof. Let u ∈ Lip(Ω) satisfying ϕ0(., Du) ≤ 1 a.e., and let Nu be the union of set of non
di�erentiability of u and the set where ϕ0(., Du) > 1. For each γ ∈ path(x, y) and γ transversal toNu

we have

u(y)− u(x) =
∫ 1

0
(u ◦ γ)′(t)dt =

∫ 1

0
∇u(γ(t)) · γ̇(t)dt.

We notice that for almost every t ∈ ]0, 1[ for which ϕ(γ(t), γ̇(t)) = 0 one has ∇u(γ(t)) ·
γ̇(t) = 0, otherwise ϕ0(γ(t), Du(γ(t))) = +∞ by the 1-homogeneity of ϕ. Moreover, for
almost every t ∈ ]0, 1[ for which ϕ(γ(t), γ̇(t)) > 0 one has

∇u(γ(t)) · γ̇(t) ≤ ϕ(γ(t), γ̇(t))

because of the 1-homogeneity of ϕ and ϕ0(., Du(.)) ≤ 1.
We thus obtain

u(y)− u(x) ≤
∫ 1

0
ϕ(γ(t), γ̇(t))dt

and then

u(y)− u(x) ≤ inf
{∫ 1

0
ϕ(γ(t), γ̇(t))dt : γ ∈ path(x, y) and γ transversal to Nu

}
.

The conclusion now follows using the de�nition of dϕ(x, y). �

We �nally prove that when the Finsler metric ϕ is regular, the two de�nitions above
coincide.

Proposition A.2. If ϕ ∈Mβ and x 7→ ϕ(x, q) is upper semicontinuous on Ω for all q,
then dϕ = dϕ.

Proof. The inequality dϕ ≥ dϕ is obvious, we just check the reverse inequality. To this
end, we have to prove that for any x, y ∈ Ω and N ∈ N one has

dϕ(x, y) = inf
{∫ 1

0
ϕ(γ(t), γ̇(t))dt : γ ∈ path(x, y) and γ transversal to N

}
. (A.1)

Let γ ∈ path(x, y), if γ is transversal to N then there is nothing to do. Otherwise, γ
can be approximated strongly in W 1,∞(]0, 1[,Ω) by a sequence (γk)k in path(x, y) with
γk transversal to N for all k (for example, see Lemma 3.2 in [5]). Then by the upper
semicontinuity of x 7→ ϕ(x, q) we infer that

lim sup
k→+∞

∫ 1

0
ϕ(γk(t), γ̇k(t))dt ≤

∫ 1

0
ϕ(γ(t), γ̇(t))dt

so that∫ 1

0
ϕ(γ(t), γ̇(t))dt ≥ inf

{∫ 1

0
ϕ(γ(t), γ̇(t))dt : γ ∈ path(x, y) and γ transversal to N

}
.

and (A.1) holds, which concludes the proof. �
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Appendix B. Properties of absolute minimizers, L and dλ.

We �rst show that an absolute minimizer of (1.1) is indeed an optimal solution of
(1.1).

Lemma B.1. If the function u ∈ W 1,∞(Ω) ∩ C(Ω) is an absolute minimizer of (1.1)
then it is a minimizer of (1.1).

Proof. Let v ∈ g +W 1,∞(Ω) ∩ C0(Ω), we aim to show that

ess.sup
x∈Ω

H(x,Du(x)) ≤ ess.sup
x∈Ω

H(x,Dv(x)). (B.1)

We �rst show that

ess.sup
x∈{u6=v}

H(x,Du(x)) ≤ ess.sup
x∈{u6=v}

H(x,Dv(x)). (B.2)

To this end, we set V +
δ := {x : u > v + δ} and V −δ := {x : u < v − δ} for any positive

δ. Then V +
δ ⊂⊂ Ω and v + δ = u on ∂V +

δ , and since u is an absolute minimizer of (1.1)
we obtain

ess.sup
x∈V +

δ

H(x,Du(x)) ≤ ess.sup
x∈V +

δ

H(x,Dv(x)).

Passing to the limit as δ tends to zero yields

ess.sup
x∈{u>v}

H(x,Du(x)) ≤ ess.sup
x∈{u>v}

H(x,Dv(x))

and (B.2) follows by applying the same argument with V −δ .
We now conclude by noticing that H(x,Du(x)) = H(x,Dv(x)) for almost every x in

{u = v} ∩ Ω. This and (B.2) conclude the proof of (B.1). �

We now turn to the study of L. We �rst notice that by de�nition and thanks to
assumption (B), for any λ ≥ 0 there exists β ≥ 0 such that L(., ., λ) belongs toMβ . In
order to be in position to apply Proposition A.2, we prove the following regularity result
on L.

Lemma B.2. The function (x, λ) 7→ L(x, q, λ) is upper-semicontinuous on Ω × R+ for
any q ∈ RN .

Proof. Let (xn, λn)n converge to (x, λ) ∈ Ω× R+, we must check that

lim sup
n→+∞

L(xn, q, λn) ≤ L(x, q, λ).

We may assume without loss of generality that the limsup is in fact a limit. For any
n ∈ N, we take pn ∈ {H(xn, .) ≤ λn} such that L(xn, q, λn) = pn · q. Thanks to (B),
the sequence (pn)n is bounded and we may extract a subsequence (pnk)nk converging to
some p ∈ RN . Since H is l.s.c., we get H(x, p) ≤ λ, so that

lim
n→+∞

L(xn, q, λn) = lim
k→+∞

pnk · qnk = p · q ≤ L(x, q, λ)

which concludes the proof. �

As a corollary of Propositions A.1 and A.2 and the above Lemma, we get the following.
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Lemma B.3. Let V be a connected open subset of Ω, then for any λ ≥ 0 and x, y ∈ V
one has

dVλ (x, y) = sup{u(y)− u(x) : u ∈W 1,∞(V )∩ C(V ), H(., Du) ≤ λ a.e. on V }. (B.3)
Moreover, if V has Lipschitz boundary, then for any λ ≥ 0 and x, y ∈ V one has

dVλ (x, y) = sup{u(y)− u(x) : u ∈W 1,∞(V )∩ C(V ), H(., Du) ≤ λ a.e. on V }. (B.4)

Proof. For (B.3), we �rst claim that

dVλ (x, y) ≥ sup{u(y)− u(x) : u ∈W 1,∞(V ) ∩ C(V ), H(., Du) ≤ λ a.e. on V }.
We remark that by assumpions (A) and (C), the set {(L(z, ·, λ))0 ≤ 1} coincides with the
set {H(z, ·) ≤ λ} for any z ∈ Ω. We infer from Lemma B.2 that x 7→ L(x, q, λ) is upper
semicontinuous for any q ∈ Rn, so that the claim follows by applying Propositions A.1
and A.2. The equality follows by taking z 7→ dVλ (x, z) as a test function in the sup (we
recall that this function is admissible as a consequence of Remark 2.8 and Proposition
2.10).

When ∂V is Lipschitz regular, any function u ∈W 1,∞(V )∩C(V ) may be extended as
a continuous function on V , so that

dVλ (x, y) = sup{u(y)− u(x) : u ∈W 1,∞(V ) ∩ C(V ), H(., Du) ≤ λ a.e. on V }
for any x, y ∈ V . We notice that the right hand side of this equality is continuous on
V ×V as a function of (x, y). Finally, since ∂V is Lipschitz regular then (x, y) 7→ dVλ (x, y)
is also continuous on V , so that (B.4) holds for (x, y) ∈ V × V . �

In the course of section 4, we also need the two following technical results.
As a �rst consequence of assumption (D), we get that in a connected open set V ⊂⊂ Ω,

the pseudo-distances dVλ and dΩ
λ locally coincide:

Lemma B.4. Let V ⊂⊂ Ω be a connected open set, λ+ > λ− > 0, and assume that
there exist and M > α > 0 such that

B(0, α) ⊂ { H(x, ·) < λ} ⊂ B(0,M)

for all x ∈ V and λ ∈ [λ−, λ+]. Then for any x, y ∈ V such that |y− x| < α
M dist(x, ∂V )

one has

∀λ ∈ [λ−, λ+] α|y − x| ≤ dVλ (x, y) = dΩ
λ (x, y) ≤ M |y − x|.

Proof. Let λ ∈ [λ−, λ+]. We �rst prove that

α|y − x| ≤ dVλ (x, y) ≤ M |y − x|. (B.5)

For the right left hand side inequality, we simply notice that for any x ∈ V and q ∈ RN

L(x, q, λ) = sup
{
p · q : p ∈ RN , H(x, p) ≤ λ

}
≥ sup {p · q : p ∈ B(0, α)} ≥ α|q|,

so that for any ξ ∈ pathV (x, y) one has∫ 1

0
L(ξ(t), ξ̇(t), λ)dt ≥ α

∫ 1

0
|ξ̇(t)|dt ≥ α|y − x|

which concludes the proof. The proof of the right hand side inequality is analogue.
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We now turn to the equality dVλ (x, y) = dΩ
λ (x, y). It is clear that dVλ (x, y) ≥ dΩ

λ (x, y),
and we infer from (B.5) that

dΩ
λ (x, y) ≤M |y − x| < αdist(x, ∂V ). (B.6)

Let now ξ ∈ pathΩ(x, y), we notice that if for some s ∈ ]0, 1[ one has |ξ(s) − x| ≥
dist(x, ∂V ) then∫ 1

0
L(ξ(t), ξ̇(t), λ)dt ≥

∫ s

0
L(ξ(t), ξ̇(t), λ)dt

≥ α

∫ s

0
|ξ̇(t)|dt ≥ α|ξ(s)− x| ≥ αdist(x, ∂V ).

It then follows from (B.6) that such a path is not optimal for dΩ
λ , so that dVλ (x, y) =

dΩ
λ (x, y). This concludes the proof. �

Lemma B.5. Let V ⊂⊂ Ω be a connected open set, λ ≥ 0, x, y ∈ V and r > 0 such that
r < min{|y− x|, dist(x, ∂V ), dist(y, ∂V )}. Then there exists z ∈ V such that |z − y| = r
and

dVλ (x, y) = dVλ (x, z) + dVλ (z, y).

Proof. Let ε > 0 and ξ ∈ pathV (x, y) be such that

dVλ (x, y) ≥
∫ 1

0
L(ξ(t), ξ̇(t), λ)dt− ε.

By de�nition of r and continuity of ξ there exists some s ∈ ]0, 1[ such that |ξ(s)−y| = r.
Then zε := ξ(s) belongs to V and

dVλ (x, y) ≥
∫ s

0
L(ξ(t), ξ̇(t), λ)dt+

∫ 1

s
L(ξ(t), ξ̇(t), λ)dt− ε

≥ dVλ (x, zε) + dVλ (zε, y)− ε.
The family (zε)ε>0 is clearly bounded, let z be one of its cluster points as ε→ 0. Then
|z − y| = r, so that z ∈ V , and taking the liminf in the above inequality yields

dVλ (x, y) ≥ dVλ (x, z) + dVλ (z, y).

We conclude by applying the triangular inequality, which holds here since z ∈ V . �
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