An extremal eigenvalue problem for a two-phase conductor¹

Carlos Conca , <u>Rajesh Mahadevan</u> , Leon Sanz

Sixièmes Journées Franco-Chiliennes d'Optimisation 19-21 mai 2008 Université du Sud Toulon-Var Complexe Agélonde - La Londe les Maures

rmahadevan@udec.cl

¹This work was realised with the support of CMM and FONDECYT N° 1070675 = -9 and

• Problem Statement.

- Existence-Difficulties.
- Symmetry and Existence.
- Improvements.
- Numerical Experiments.

Э.

A B M A B M

- Problem Statement.
- Existence-Difficulties.
- Symmetry and Existence.
- Improvements.
- Numerical Experiments.

Э.

A B M A B M

- Problem Statement.
- Existence-Difficulties.
- Symmetry and Existence.
- Improvements.
- Numerical Experiments.

Э.

-∢ ⊒ →

- Problem Statement.
- Existence-Difficulties.
- Symmetry and Existence.
- Improvements.
- Numerical Experiments.

문어 문

- Problem Statement.
- Existence-Difficulties.
- Symmetry and Existence.
- Improvements.
- Numerical Experiments.

Э.

Eigenvalue Problem for Conductors

- $\Omega \subset \mathbb{R}^n$ design region.
- $0 < \alpha < \beta$ conductivity coefficients.
- $\omega \subset \Omega$ region occupied by β .

$$\lambda^{1}(\omega) := \min_{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega} (\alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega}) |\nabla u|^{2} dx}{\int_{\Omega} |u|^{2} dx}$$

Optimization Problem.

• *m*-constant, $0 < m < |\Omega|$.

0

$\inf\left\{\lambda^1(\omega):\omega\subset\Omega,\omega ext{ measurable},|\omega|=m ight\}$.

A B M A B M

Eigenvalue Problem for Conductors

- $\Omega \subset \mathbb{R}^n$ design region.
- $0 < \alpha < \beta$ conductivity coefficients.
- $\omega \subset \Omega$ region occupied by β .

$$\lambda^{1}(\omega) := \min_{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega} (\alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega}) |\nabla u|^{2} dx}{\int_{\Omega} |u|^{2} dx}$$

Optimization Problem.

• *m*-constant, $0 < m < |\Omega|$.

0

 $\inf\left\{\lambda^1(\omega):\omega\subset\Omega,\omega ext{ measurable},|\omega|=m
ight\}$.

• • = • • = •

Eigenvalue Problem for Conductors

- $\Omega \subset \mathbb{R}^n$ design region.
- $0 < \alpha < \beta$ conductivity coefficients.
- $\omega \subset \Omega$ region occupied by β .

$$\lambda^{1}(\omega) := \min_{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega} (\alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega}) |\nabla u|^{2} dx}{\int_{\Omega} |u|^{2} dx}$$

Optimization Problem.

```
• m-constant, 0 < m < |\Omega|.
```

0

 $\inf\left\{\lambda^1(\omega):\omega\subset\Omega,\omega ext{ measurable},|\omega|=m
ight\}$.

• • = • • = •

Eigenvalue Problem for Conductors

- $\Omega \subset \mathbb{R}^n$ design region.
- $0 < \alpha < \beta$ conductivity coefficients.
- $\omega \subset \Omega$ region occupied by β .

$$\lambda^{1}(\omega) := \min_{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega} (\alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega}) |\nabla u|^{2} dx}{\int_{\Omega} |u|^{2} dx}$$

Optimization Problem.

```
• m-constant, 0 < m < |\Omega|.
```

0

٩

 $\inf\left\{\lambda^1(\omega):\omega\subset\Omega,\omega ext{ measurable},|\omega|=m
ight\}$.

(*) *) *) *)

Eigenvalue Problem for Conductors

- $\Omega \subset \mathbb{R}^n$ design region.
- $0 < \alpha < \beta$ conductivity coefficients.
- $\omega \subset \Omega$ region occupied by β .

$$\lambda^{1}(\omega) := \min_{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega} (\alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega}) |\nabla u|^{2} dx}{\int_{\Omega} |u|^{2} dx}$$

Optimization Problem.

• *m*-constant, $0 < m < |\Omega|$.

0

٩

 $\inf \left\{ \lambda^1(\omega) : \omega \subset \Omega, \omega \text{ measurable}, |\omega| = m
ight\}$.

Eigenvalue Problem for Conductors

- $\Omega \subset \mathbb{R}^n$ design region.
- $0 < \alpha < \beta$ conductivity coefficients.
- $\omega \subset \Omega$ region occupied by β .

$$\lambda^{1}(\omega) := \min_{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega} (\alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega}) |\nabla u|^{2} dx}{\int_{\Omega} |u|^{2} dx}$$

Optimization Problem.

٩

• *m*-constant, $0 < m < |\Omega|$.

 $\inf\left\{\lambda^1(\omega):\omega\subset\Omega,\omega ext{ measurable},|\omega|=m
ight\}$.

Eigenvalue Problem for Conductors

- $\Omega \subset \mathbb{R}^n$ design region.
- $0 < \alpha < \beta$ conductivity coefficients.
- $\omega \subset \Omega$ region occupied by β .

$$\lambda^{1}(\omega) := \min_{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega} (\alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega}) |\nabla u|^{2} dx}{\int_{\Omega} |u|^{2} dx}$$

Optimization Problem.

• *m*-constant, $0 < m < |\Omega|$.

٩

٩

$$\inf\left\{\lambda^1(\omega):\omega\subset\Omega,\omega ext{ measurable},|\omega|=m
ight\}$$
 .

Plan The Problem Existence? Existence!

Questions of Interest

• Does there exist a minimizer for the problem?

• How does it look like? - To obtain characterizations of minimizers.

Questions of Interest

- Does there exist a minimizer for the problem?
- How does it look like? To obtain characterizations of minimizers.

Existence

General Formulation

$$\inf \{F(\omega) : \omega \in \mathcal{A}\}$$
.

 \mathcal{A} - admissible shapes.

Weierstrass-Tonnelli Existence Theorem

If we can give a topology on $\mathcal A$ for which

- F is lower-semicontinuous and,
- ② the level sets of F in \mathcal{A} are compact

then the existence of a minimizer to the problem follows.

Existence

General Formulation

$$\inf \{F(\omega) : \omega \in \mathcal{A}\}$$
.

 \mathcal{A} - admissible shapes.

Weierstrass-Tonnelli Existence Theorem

If we can give a topology on ${\mathcal A}$ for which

- F is lower-semicontinuous and,
- **2** the level sets of F in A are compact

then the existence of a minimizer to the problem follows.

Finding a topology which serves.

Haussdorff convergence of sets

$$\omega_n \xrightarrow{H} \omega$$
 if $d_H(\omega_n, \omega) \to 0$,

where

$$d_H(\omega_n,\omega) = \max\left\{\sup_{x\in\omega_n} d(x,\omega), \sup_{x\in\omega} d(x,\omega_n)
ight\}$$

• $\omega \mapsto \lambda_1(\omega)$ is continuous but,

• $\{\omega : \omega \subset \Omega, \omega \text{ measurable }, |\omega| = m\}$ is not compact.

Supplementary constraints

Perimeter constraint, convex inclusions, number of connected components, capacity conditions etc...make the constraint set compact for the above topology cf. Bucur and Buttazzo, Henrot and Pierre.

Finding a topology which serves.

Haussdorff convergence of sets

$$\omega_n \xrightarrow{H} \omega$$
 if $d_H(\omega_n, \omega) \to 0$,

where

$$d_H(\omega_n,\omega) = \max\left\{\sup_{x\in\omega_n} d(x,\omega), \sup_{x\in\omega} d(x,\omega_n)
ight\},$$

- $\omega\mapsto\lambda_1(\omega)$ is continuous but,
- $\{\omega : \omega \subset \Omega, \omega \text{ measurable }, |\omega| = m\}$ is not compact.

Supplementary constraints

Perimeter constraint, convex inclusions, number of connected components, capacity conditions etc...make the constraint set compact for the above topology cf. Bucur and Buttazzo, Henrot and Pierre.

Finding a topology which serves.

Haussdorff convergence of sets

$$\omega_n \xrightarrow{H} \omega$$
 if $d_H(\omega_n, \omega) \to 0$,

where

$$d_H(\omega_n,\omega) = \max\left\{\sup_{x\in\omega_n} d(x,\omega), \sup_{x\in\omega} d(x,\omega_n)
ight\},$$

- $\omega \mapsto \lambda_1(\omega)$ is continuous but,
- $\{\omega : \omega \subset \Omega, \omega \text{ measurable }, |\omega| = m\}$ is not compact.

Supplementary constraints

Perimeter constraint, convex inclusions, number of connected components, capacity conditions etc...make the constraint set compact for the above topology cf. Bucur and Buttazzo, Henrot and Pierre.

Finding a topology which serves.

Haussdorff convergence of sets

$$\omega_n \xrightarrow{H} \omega$$
 if $d_H(\omega_n, \omega) \to 0$,

where

$$d_H(\omega_n,\omega) = \max\left\{\sup_{x\in\omega_n} d(x,\omega), \sup_{x\in\omega} d(x,\omega_n)
ight\},$$

- $\omega \mapsto \lambda_1(\omega)$ is continuous but,
- $\{\omega : \omega \subset \Omega, \omega \text{ measurable }, |\omega| = m\}$ is not compact.

Supplementary constraints

Perimeter constraint, convex inclusions, number of connected components, capacity conditions etc...make the constraint set compact for the above topology cf. Bucur and Buttazzo, Henrot and Pierre.

Finding a topology which serves.

Haussdorff convergence of sets

$$\omega_n \xrightarrow{H} \omega$$
 if $d_H(\omega_n, \omega) \to 0$,

where

$$d_H(\omega_n,\omega) = \max\left\{\sup_{x\in\omega_n} d(x,\omega), \sup_{x\in\omega} d(x,\omega_n)
ight\},$$

- $\omega\mapsto\lambda_1(\omega)$ is continuous but,
- $\{\omega : \omega \subset \Omega, \omega \text{ measurable }, |\omega| = m\}$ is not compact.

Supplementary constraints

Perimeter constraint, convex inclusions, number of connected components, capacity conditions etc...make the constraint set compact for the above topology cf. Bucur and Buttazzo, Henrot and Pierre.

Change of Perspective

$$\mu_1(
u) := \lambda_1(\omega)$$
 if $u = lpha \chi_{\Omega \setminus \omega} + eta \chi_{\omega}, |\omega| = m$

Search for a Topology

$$\mathsf{Admissible set -}\mathcal{C} := \left\{ \nu : \nu = \alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega} \,, \omega \subset \Omega \,, |\omega| = m \right\}$$

- Any topology on C which gives pointwise a. e. convergence of ν a priori renders it non-compact.
- C relatively compact in L[∞](Ω) for weak-* topology but µ₁ not lower semi-continuous.

ゆ と く ヨ と く ヨ と

Change of Perspective

$$\mu_1(
u) := \lambda_1(\omega) ext{ if }
u = lpha \chi_{\Omega \setminus \omega} + eta \chi_{\omega} \,, |\omega| = m$$

Search for a Topology

Admissible set -
$$C := \{ \nu : \nu = \alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega} , \omega \subset \Omega , |\omega| = m \}$$

- Any topology on C which gives pointwise a. e. convergence of ν a priori renders it non-compact.
- C relatively compact in L[∞](Ω) for weak-* topology but µ₁ not lower semi-continuous.

イヨトイヨト

Change of Perspective

$$\mu_1(
u) := \lambda_1(\omega)$$
 if $u = lpha \chi_{\Omega \setminus \omega} + eta \chi_{\omega}, |\omega| = m$

Search for a Topology

 $\mathsf{Admissible \ set} \ \textbf{-}\mathcal{C} := \left\{ \nu : \nu = \alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega} \ , \omega \subset \Omega \ , |\omega| = m \right\}$

- Any topology on C which gives pointwise a. e. convergence of ν a priori renders it non-compact.
- C relatively compact in L[∞](Ω) for weak-* topology but µ₁ not lower semi-continuous.

イヨトイヨト

Change of Perspective

$$\mu_1(
u) := \lambda_1(\omega) ext{ if }
u = lpha \chi_{\Omega \setminus \omega} + eta \chi_{\omega} \,, |\omega| = m$$

Search for a Topology

 $\mathsf{Admissible \ set} \ {\mathcal C} := \left\{ \nu : \nu = \alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega} \ , \omega \subset \Omega \ , |\omega| = m \right\}$

- Any topology on C which gives pointwise a. e. convergence of ν a priori renders it non-compact.
- C relatively compact in L[∞](Ω) for weak-* topology but µ₁ not lower semi-continuous.

- Enlarge the solution space. Take $\mathcal{C} := \left\{ \nu \in L^{\infty}(\Omega) : \alpha \leq \nu\beta, \int_{\Omega} \nu(x) \, dx = \alpha(|\Omega| - m) + \beta m \right\}$
- To find the lower-semicontinuous envelope of the functional μ₁ on C for the weak-* convergence on L[∞](Ω).
- Matrix formulation of the coefficients and a different notion of matrix convergence (*G*- convergence)due to Spagnolo, Murat-Tartar is involved in this description.
- Solutions in this framework show microstructure- studied by Cox-Lipton ARMA '96.

- Enlarge the solution space. Take $\mathcal{C} := \left\{ \nu \in L^{\infty}(\Omega) : \alpha \leq \nu\beta, \int_{\Omega} \nu(x) \, dx = \alpha(|\Omega| - m) + \beta m \right\}$
- To find the lower-semicontinuous envelope of the functional μ₁ on C for the weak-* convergence on L[∞](Ω).
- Matrix formulation of the coefficients and a different notion of matrix convergence (*G*- convergence)due to Spagnolo, Murat-Tartar is involved in this description.
- Solutions in this framework show microstructure- studied by Cox-Lipton ARMA '96.

- Enlarge the solution space. Take $\mathcal{C} := \left\{ \nu \in L^{\infty}(\Omega) : \alpha \leq \nu\beta, \int_{\Omega} \nu(x) \, dx = \alpha(|\Omega| - m) + \beta m \right\}$
- To find the lower-semicontinuous envelope of the functional μ₁ on C for the weak-* convergence on L[∞](Ω).
- Matrix formulation of the coefficients and a different notion of matrix convergence (*G*- convergence)due to Spagnolo, Murat-Tartar is involved in this description.
- Solutions in this framework show microstructure- studied by Cox-Lipton ARMA '96.

- Enlarge the solution space. Take $\mathcal{C} := \left\{ \nu \in L^{\infty}(\Omega) : \alpha \leq \nu\beta, \int_{\Omega} \nu(x) \, dx = \alpha(|\Omega| - m) + \beta m \right\}$
- To find the lower-semicontinuous envelope of the functional μ₁ on C for the weak-* convergence on L[∞](Ω).
- Matrix formulation of the coefficients and a different notion of matrix convergence (*G*- convergence)due to Spagnolo, Murat-Tartar is involved in this description.
- Solutions in this framework show microstructure- studied by Cox-Lipton ARMA '96.

Very few results are available.

One Dimension

- Krein in 1955.
- Uses the equivalence with the first eigenvalue problem for vibrating strings.

$$\mu_1(\rho) = \min_{u \in H_0^1(\Omega)} \frac{\int_0^L |\nabla u|^2(y) dy}{\int_0^L \rho(y) |u|^2(y) dy}$$

$$\mu_1(\rho) = \nu(T^{-1}(y)) \text{ and } T : [0,1] \to [0,L] \text{ with}$$

$$T(x) = \int_0^x \frac{1}{\nu(s)} \, ds \, .$$

- ρ satisfies similar constraints. μ_1 is continuous for weak-* convergence.
- Precise minimizer consists in taking β in the middle. Shown by symmetrization.

Very few results are available.

One Dimension

- Krein in 1955.
- Uses the equivalence with the first eigenvalue problem for vibrating strings.

$$\mu_1(\rho) = \min_{u \in H_0^1(\Omega)} \frac{\int_0^L |\nabla u|^2(y) dy}{\int_0^L \rho(y) |u|^2(y) dy}$$
$$= \nu(T^{-1}(y)) \text{ and } T : [0, 1] \to [0, 1] \text{ with}$$

where
$$\rho(y) = \nu(T^{-1}(y))$$
 and $T : [0, 1] \rightarrow [0, L]$ with
 $T(x) = \int_0^x \frac{1}{\nu(s)} ds$.

- ρ satisfies similar constraints. μ_1 is continuous for weak-* convergence.
- Precise minimizer consists in taking β in the middle. Shown by symmetrization.

Very few results are available.

One Dimension

- Krein in 1955.
- Uses the equivalence with the first eigenvalue problem for vibrating strings.

$$\mu_1(\rho) = \min_{u \in H_0^1(\Omega)} \frac{\int_0^L |\nabla u|^2(y) dy}{\int_0^L \rho(y) |u|^2(y) dy}$$

where $\rho(y) = \nu(T^{-1}(y))$ and $T : [0, 1] \to [0, L]$ with $T(x) = \int_0^x \frac{1}{\nu(s)} ds$.

- ρ satisfies similar constraints. μ_1 is continuous for weak-* convergence.
- Precise minimizer consists in taking β in the middle. Shown by symmetrization.

Very few results are available.

One Dimension

- Krein in 1955.
- Uses the equivalence with the first eigenvalue problem for vibrating strings.

$$\mu_1(\rho) = \min_{u \in \mathcal{H}_0^1(\Omega)} \frac{\int_0^L |\nabla u|^2(y) dy}{\int_0^L \rho(y) |u|^2(y) dy}$$

where $\rho(y) = \nu(T^{-1}(y))$ and $T : [0, 1] \to [0, L]$ with $T(x) = \int_0^x \frac{1}{\nu(s)} ds$.

- ρ satisfies similar constraints. μ_1 is continuous for weak-* convergence.
- Precise minimizer consists in taking β in the middle. Shown by symmetrization.

Very few results are available.

One Dimension

- Krein in 1955.
- Uses the equivalence with the first eigenvalue problem for vibrating strings.

$$\mu_1(\rho) = \min_{u \in H_0^1(\Omega)} \frac{\int_0^L |\nabla u|^2(y) dy}{\int_0^L \rho(y) |u|^2(y) dy}$$

where $\rho(y) = \nu(T^{-1}(y))$ and $T : [0, 1] \to [0, L]$ with $T(x) = \int_0^x \frac{1}{\nu(s)} ds$.

- ρ satisfies similar constraints. μ_1 is continuous for weak-* convergence.
- Precise minimizer consists in taking β in the middle. Shown by symmetrization.

Classical Solutions-Existence...continued

Higher dimensions ?

Membrane Problem

- Have existence for the "vibrating membrane problem" in any dimension cf. Cox and McLaughlin *Appl. Math. Optimization* '90.
- In a ball, the solution has the same structure as in one-dimension.
- In a symmetric domain one has symmetric minimizers. By Symmetrization.

Conduction $\leftarrow \rightarrow$ Membrane?

Is there a transformation which gives an equivalence between the eigenvalue problems for conduction and membranes in dimensions $\geq 2?$

Classical Solutions-Existence...continued

Higher dimensions ?

Membrane Problem

- Have existence for the "vibrating membrane problem" in any dimension cf. Cox and McLaughlin *Appl. Math. Optimization* '90.
- In a ball, the solution has the same structure as in one-dimension.
- In a symmetric domain one has symmetric minimizers. By Symmetrization.

Conduction $\leftarrow \rightarrow$ Membrane?

Is there a transformation which gives an equivalence between the eigenvalue problems for conduction and membranes in dimensions ≥ 2 ?

Plan The Problem Existence? Existence!

Classical Solutions-Existence...continued

Higher Dimensions - Balls

Theorem (Alvino, Lions, Trombetti Nonlin. Anal. '89)

There exists a classical symmetric minimizer.

Proof

Requires a fine symmetrization result.

Plan The Problem Existence? Existence!

Classical Solutions-Existence...continued

Higher Dimensions - Balls

Theorem (Alvino, Lions, Trombetti Nonlin. Anal. '89)

There exists a classical symmetric minimizer.

Proof

Requires a fine symmetrization result.

3

< 3 > < 3 >

Schwarz Symmetrization

Definition

• $\Omega = B(0,1)$, $u : \Omega \to \mathbb{R}^+$ bounded.

•
$$\Omega_c = \{x \in \Omega : f(x) \ge c\}, \ \Omega_c^* = B(0, r_c), \ |\Omega_c^*| = |\Omega_c|.$$

- $f^*(x) := \sup \{ c : x \in \Omega_c^* \}.$
- (Equimeasurability) $|\{f \ge c\}| = |\{f^* \ge c\}|$.
- (Isoperimetric inequality) $P(\{f \ge c\}) \ge P(\{f^* \ge c\})$.

Consequences

•
$$\int_{\Omega} h(f(x)) dx = \int_{\Omega} h(f^*(x)) dx$$
. In particular for $h(s) = s^2$.

- (Hardy-Littlewood Inequiaity) $\int_{\Omega} f(x)g(x) dx \le \int_{\Omega} f^*(x)g^*(x) dx$.
- (Polya-Szëgo Inequality) $\int_{\Omega} |\nabla u|^2(x) dx \ge \int_{\Omega} |\nabla u^*|^2(x) dx$.

÷

Schwarz Symmetrization

Definition

• $\Omega = B(0,1)$, $u : \Omega \to \mathbb{R}^+$ bounded.

•
$$\Omega_c = \{x \in \Omega : f(x) \ge c\}, \ \Omega_c^* = B(0, r_c), \ |\Omega_c^*| = |\Omega_c|.$$

- $f^*(x) := \sup \{ c : x \in \Omega_c^* \}.$
- (Equimeasurability) $|\{f \ge c\}| = |\{f^* \ge c\}|$.
- (Isoperimetric inequality) $P(\{f \ge c\}) \ge P(\{f^* \ge c\})$.

Consequences

•
$$\int_{\Omega} h(f(x)) dx = \int_{\Omega} h(f^*(x)) dx$$
. In particular for $h(s) = s^2$.

- (Hardy-Littlewood Inequiaity) $\int_{\Omega} f(x)g(x) dx \le \int_{\Omega} f^*(x)g^*(x) dx$.
- (Polya-Szëgo Inequality) $\int_{\Omega} |\nabla u|^2(x) dx \ge \int_{\Omega} |\nabla u^*|^2(x) dx$.

÷

Schwarz Symmetrization

Definition

• $\Omega = B(0,1), u : \Omega \to \mathbb{R}^+$ bounded.

•
$$\Omega_c = \{x \in \Omega : f(x) \ge c\}, \ \Omega_c^* = B(0, r_c), |\Omega_c^*| = |\Omega_c|.$$

- $f^*(x) := \sup \{ c : x \in \Omega_c^* \}.$
- (Equimeasurability) $|\{f > c\}| = |\{f^* > c\}|.$
- (Isoperimetric inequality) $P(\{f > c\}) > P(\{f^* > c\})$.

Consequences

•
$$\int_{\Omega} h(f(x)) dx = \int_{\Omega} h(f^*(x)) dx$$
. In particular for $h(s) = s^2$.

- (Hardy-Littlewood Inequiaity) $\int_{\Omega} f(x)g(x) dx \leq \int_{\Omega} f^*(x)g^*(x) dx$.
- (Polya-Szëgo Inequality) $\int_{\Omega} |\nabla u|^2(x) \, dx \ge \int_{\Omega} |\nabla u^*|^2(x) \, dx$.

Extract minimizing sequences having symmetry.

Membrane Problem

• ρ_n minimizing sequence $\Rightarrow \rho_n^*$ another minimizing sequence

$$\mu_1(\rho_n) = \frac{\int_{\Omega} |\nabla u_n|^2(y) dy}{\int_{\Omega} \rho_n(y) |u_n|^2(y) dy} \ge \frac{\int_{\Omega} |\nabla u_n^*|^2(y) dy}{\int_{\Omega} \rho_n^*(y) |u_n^*|^2(y) dy} \ge \mu_1(\rho_n)$$

Conduction Problem

• ν_n minimizing sequence $\Rightarrow \nu_n^*$ another minimizing sequence

A fine result proved using concentration compactness. Would require dexterity to obtain this for other kinds of symmetrizations.

Extract minimizing sequences having symmetry.

Membrane Problem

• ρ_n minimizing sequence $\Rightarrow \rho_n^*$ another minimizing sequence

$$\mu_1(\rho_n) = \frac{\int_{\Omega} |\nabla u_n|^2(y) dy}{\int_{\Omega} \rho_n(y) |u_n|^2(y) dy} \ge \frac{\int_{\Omega} |\nabla u_n^*|^2(y) dy}{\int_{\Omega} \rho_n^*(y) |u_n^*|^2(y) dy} \ge \mu_1(\rho_n)$$

Conduction Problem

• ν_n minimizing sequence $\Rightarrow \nu_n^*$ another minimizing sequence

Theorem (Alvino, Lions and Trombetti)

Given u and u, there exists $\widetilde{
u}$ radially symmetric with $u^* = \left(\widetilde{
u}
ight)^*$ such that

$$\int_{\Omega} \nu \left| \nabla u \right|^{2} (x) \, dx \geq \int_{\Omega} \widetilde{\nu} \left| \nabla u^{*} \right|^{2} (x) \, dx$$

 A fine result proved using concentration compactness. Would require dexterity to obtain this for other kinds of symmetrizations.

Extract minimizing sequences having symmetry.

Membrane Problem

• ρ_n minimizing sequence $\Rightarrow \rho_n^*$ another minimizing sequence

$$\mu_1(\rho_n) = \frac{\int_{\Omega} |\nabla u_n|^2(y) dy}{\int_{\Omega} \rho_n(y) |u_n|^2(y) dy} \ge \frac{\int_{\Omega} |\nabla u_n^*|^2(y) dy}{\int_{\Omega} \rho_n^*(y) |u_n^*|^2(y) dy} \ge \mu_1(\rho_n)$$

Conduction Problem

• ν_n minimizing sequence $\Rightarrow \nu_n^*$ another minimizing sequence

Theorem (Alvino, Lions and Trombetti)

Given u and u, there exists $\widetilde{
u}$ radially symmetric with $u^* = (\widetilde{
u})^*$ such that

$$\int_{\Omega} \nu \left| \nabla u \right|^{2}(x) \, dx \ge \int_{\Omega} \widetilde{\nu} \left| \nabla u^{*} \right|^{2}(x) \, dx$$

 A fine result proved using concentration compactness. Would require dexterity to obtain this for other kinds of symmetrizations.

Extract minimizing sequences having symmetry.

Membrane Problem

• ρ_n minimizing sequence $\Rightarrow \rho_n^*$ another minimizing sequence

$$\mu_1(\rho_n) = \frac{\int_{\Omega} |\nabla u_n|^2(y) dy}{\int_{\Omega} \rho_n(y) |u_n|^2(y) dy} \ge \frac{\int_{\Omega} |\nabla u_n^*|^2(y) dy}{\int_{\Omega} \rho_n^*(y) |u_n^*|^2(y) dy} \ge \mu_1(\rho_n)$$

Conduction Problem

• ν_n minimizing sequence $\Rightarrow \nu_n^*$ another minimizing sequence

Theorem (Alvino, Lions and Trombetti)

Given ν and u, there exists $\tilde{\nu}$ radially symmetric with $\nu^* = (\tilde{\nu})^*$ such that

$$\int_{\Omega}\nu\left|\nabla u\right|^{2}(x)\,dx\geq\int_{\Omega}\widetilde{\nu}\left|\nabla u^{*}\right|^{2}(x)\,dx$$

 A fine result proved using concentration compactness. Would require dexterity to obtain this for other kinds of symmetrizations

Extract minimizing sequences having symmetry.

Membrane Problem

• ρ_n minimizing sequence $\Rightarrow \rho_n^*$ another minimizing sequence

$$\mu_1(\rho_n) = \frac{\int_{\Omega} |\nabla u_n|^2(y) dy}{\int_{\Omega} \rho_n(y) |u_n|^2(y) dy} \ge \frac{\int_{\Omega} |\nabla u_n^*|^2(y) dy}{\int_{\Omega} \rho_n^*(y) |u_n^*|^2(y) dy} \ge \mu_1(\rho_n)$$

Conduction Problem

• ν_n minimizing sequence $\Rightarrow \nu_n^*$ another minimizing sequence

Theorem (Alvino, Lions and Trombetti)

Given ν and u, there exists $\tilde{\nu}$ radially symmetric with $\nu^* = (\tilde{\nu})^*$ such that

$$\int_{\Omega}\nu\left|\nabla u\right|^{2}\left(x\right)dx\geq\int_{\Omega}\widetilde{\nu}\left|\nabla u^{*}\right|^{2}\left(x\right)dx$$

• A fine result proved using concentration compactness. Would require dexterity to obtain this for other kinds of symmetrizations.

 $\mathcal{O} \land \mathcal{O}$

Existence

Reduction

$$\inf \left\{ \lambda_1(\nu) : \nu \in \mathcal{C} \right\} = \inf \left\{ \lambda_1(\nu) : \nu \in \mathcal{C}^s \right\}$$

First Existence Result

Existence in

$$\mathcal{K}^{s} := \left\{ \nu : \exists \nu_{n} \in \mathcal{C}^{s}, \nu_{n}^{-1} \stackrel{*}{\rightharpoonup} \nu^{-1} \right\}$$

as $\lambda_1 \sqcup \mathcal{K}^s$ is continuous for $\nu_n \xrightarrow{r} \nu \iff \nu_n^{-1} \xrightarrow{*} \nu^{-1}$.

Classical Existence

 $J: \nu^{-1} \mapsto (\lambda^1(\nu))^{-1}$ is a convex map on the convex set $\{\nu^{-1}: \nu \in \mathcal{K}^s\}$. There is always an extremum point which maximizes a convex function on a convex set.

ゆ と く ヨ と く ヨ と

Existence

Reduction

$$\inf \{\lambda_1(\nu) : \nu \in \mathcal{C}\} = \inf \{\lambda_1(\nu) : \nu \in \mathcal{C}^s\}$$

First Existence Result

Existence in

$$\mathcal{K}^{s} := \left\{ \nu : \exists \nu_{n} \in \mathcal{C}^{s}, \nu_{n}^{-1} \stackrel{*}{\rightharpoonup} \nu^{-1} \right\}$$

as $\lambda_1 \sqcup \mathcal{K}^s$ is continuous for $\nu_n \xrightarrow{r} \nu \iff \nu_n^{-1} \xrightarrow{*} \nu^{-1}$.

Classical Existence

 $J: \nu^{-1} \mapsto (\lambda^1(\nu))^{-1}$ is a convex map on the convex set $\{\nu^{-1}: \nu \in \mathcal{K}^s\}$. There is always an extremum point which maximizes a convex function on a convex set.

Existence

Reduction

$$\inf \{\lambda_1(\nu) : \nu \in \mathcal{C}\} = \inf \{\lambda_1(\nu) : \nu \in \mathcal{C}^s\}$$

First Existence Result

Existence in

$$\mathcal{K}^{s} := \left\{ \nu : \exists \nu_{n} \in \mathcal{C}^{s}, \nu_{n}^{-1} \stackrel{*}{\rightharpoonup} \nu^{-1} \right\}$$

as $\lambda_1 \sqcup \mathcal{K}^s$ is continuous for $\nu_n \xrightarrow{r} \nu \iff \nu_n^{-1} \xrightarrow{*} \nu^{-1}$.

Classical Existence

 $J: \nu^{-1} \mapsto (\lambda^1(\nu))^{-1}$ is a convex map on the convex set $\{\nu^{-1}: \nu \in \mathcal{K}^s\}$. There is always an extremum point which maximizes a convex function on a convex set.

First existence result is in an enlarged set; Alvino, Lions and Trombetti theorem may not extend to other symmetric domains.

Lemma-Alvino and Trombetti

Given ν and u, there exists $\widetilde{\nu} \in \mathcal{K}^{\textit{s}}$ such that

$$\int_{\Omega}\nu\left|\nabla u\right|^{2}(x)\,dx\geq\int_{\Omega}\widetilde{\nu}\left|\nabla u^{*}\right|^{2}(x)\,dx$$

Reduction

$$\inf \{\lambda_1(\nu) : \nu \in \mathcal{C}\} = \min \{\lambda_1(\nu) : \nu \in \mathcal{K}^s\}$$

Observations

- Proof of Alvino and Trombetti Lemma uses only the co-area formula, the properties of symmetrization and the isoperimetric inequality.
- We give a refined proof. Possible to change Schwarz symmetrization for Steiner symmetrization. ⇒ existence of a symmetric minimizer.

Existence of a classical minimizer? uniqueness? exact shape? etc..

First existence result is in an enlarged set; Alvino, Lions and Trombetti theorem may not extend to other symmetric domains.

Lemma-Alvino and Trombetti

Given ν and u, there exists $\widetilde{\nu} \in \mathcal{K}^s$ such that

$$\int_{\Omega}\nu\left|\nabla u\right|^{2}(x)\,dx\geq\int_{\Omega}\widetilde{\nu}\left|\nabla u^{*}\right|^{2}(x)\,dx$$

Reduction

$$\inf \left\{ \lambda_1(\nu) : \nu \in \mathcal{C} \right\} = \min \left\{ \lambda_1(\nu) : \nu \in \mathcal{K}^s \right\}$$

Observations

- Proof of Alvino and Trombetti Lemma uses only the co-area formula, the properties of symmetrization and the isoperimetric inequality.
- We give a refined proof. Possible to change Schwarz symmetrization for Steiner symmetrization. ⇒ existence of a symmetric minimizer.

Carlos Conca, Rajesh Mahadevan, Leon Sanz An extremal eigenvalue problem for a two-phase conductor

First existence result is in an enlarged set; Alvino, Lions and Trombetti theorem may not extend to other symmetric domains.

Lemma-Alvino and Trombetti

Given ν and u, there exists $\widetilde{\nu} \in \mathcal{K}^s$ such that

$$\int_{\Omega}\nu\left|\nabla u\right|^{2}(x)\,dx\geq\int_{\Omega}\widetilde{\nu}\left|\nabla u^{*}\right|^{2}(x)\,dx$$

Reduction

$$\inf \{\lambda_1(\nu) : \nu \in \mathcal{C}\} = \min \{\lambda_1(\nu) : \nu \in \mathcal{K}^s\}$$

Observations

- Proof of Alvino and Trombetti Lemma uses only the co-area formula, the properties of symmetrization and the isoperimetric inequality.
- We give a refined proof. Possible to change Schwarz symmetrization for Steiner symmetrization. ⇒ existence of a symmetric minimizer.
- Existence of a classical minimizer? uniqueness? exact shape? etc..

Carlos Conca, Rajesh Mahadevan, Leon Sanz

First existence result is in an enlarged set; Alvino, Lions and Trombetti theorem may not extend to other symmetric domains.

Lemma-Alvino and Trombetti

Given ν and u, there exists $\widetilde{\nu} \in \mathcal{K}^s$ such that

$$\int_{\Omega}\nu\left|\nabla u\right|^{2}(x)\,dx\geq\int_{\Omega}\widetilde{\nu}\left|\nabla u^{*}\right|^{2}(x)\,dx$$

Reduction

$$\inf \{\lambda_1(\nu) : \nu \in \mathcal{C}\} = \min \{\lambda_1(\nu) : \nu \in \mathcal{K}^s\}$$

Observations

- Proof of Alvino and Trombetti Lemma uses only the co-area formula, the properties of symmetrization and the isoperimetric inequality.
- We give a refined proof. Possible to change Schwarz symmetrization for Steiner symmetrization. ⇒ existence of a symmetric minimizer.
- Existence of a classical minimizer? uniqueness? exact shape? etc..

First existence result is in an enlarged set; Alvino, Lions and Trombetti theorem may not extend to other symmetric domains.

Lemma-Alvino and Trombetti

Given ν and u, there exists $\widetilde{\nu} \in \mathcal{K}^s$ such that

$$\int_{\Omega}\nu\left|\nabla u\right|^{2}(x)\,dx\geq\int_{\Omega}\widetilde{\nu}\left|\nabla u^{*}\right|^{2}(x)\,dx$$

Reduction

$$\inf \{\lambda_1(\nu) : \nu \in \mathcal{C}\} = \min \{\lambda_1(\nu) : \nu \in \mathcal{K}^s\}$$

Observations

- Proof of Alvino and Trombetti Lemma uses only the co-area formula, the properties of symmetrization and the isoperimetric inequality.
- We give a refined proof. Possible to change Schwarz symmetrization for Steiner symmetrization. ⇒ existence of a symmetric minimizer.
 - Existence of a classical minimizer? uniqueness? exact shape? etc..

First existence result is in an enlarged set; Alvino, Lions and Trombetti theorem may not extend to other symmetric domains.

Lemma-Alvino and Trombetti

Given ν and u, there exists $\widetilde{\nu} \in \mathcal{K}^s$ such that

$$\int_{\Omega}\nu\left|\nabla u\right|^{2}(x)\,dx\geq\int_{\Omega}\widetilde{\nu}\left|\nabla u^{*}\right|^{2}(x)\,dx$$

Reduction

$$\inf \{\lambda_1(\nu) : \nu \in \mathcal{C}\} = \min \{\lambda_1(\nu) : \nu \in \mathcal{K}^s\}$$

Observations

- Proof of Alvino and Trombetti Lemma uses only the co-area formula, the properties of symmetrization and the isoperimetric inequality.
- We give a refined proof. Possible to change Schwarz symmetrization for Steiner symmetrization. ⇒ existence of a symmetric minimizer.
- Existence of a classical minimizer? uniqueness? exact shape? etc..