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Plan The Problem Existence? Existence!

Problem Statement

Eigenvalue Problem for Conductors

Ω ⊂ R
n - design region.

0 < α < β - conductivity coefficients.

ω ⊂ Ω - region occupied by β.

λ1(ω) := min
u∈H1

0 (Ω)

∫
Ω
(αχΩ\ω

+ βχω)|∇u|2dx∫
Ω |u|

2dx
.

Optimization Problem.

m-constant, 0 < m < |Ω|.

inf
{
λ1(ω) : ω ⊂ Ω, ω measurable, |ω| = m

}
.
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Plan The Problem Existence? Existence!

Questions of Interest

Does there exist a minimizer for the problem?

How does it look like? - To obtain characterizations of minimizers.
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Existence

General Formulation

inf {F (ω) : ω ∈ A} .

A- admissible shapes.

Weierstrass-Tonnelli Existence Theorem

If we can give a topology on A for which

1 F is lower-semicontinuous and,

2 the level sets of F in A are compact

then the existence of a minimizer to the problem follows.
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Plan The Problem Existence? Existence!

Existence-Difficulties

Finding a topology which serves.

Haussdorff convergence of sets

ωn

H
→ ω if dH(ωn, ω)→ 0 ,

where

dH(ωn, ω) = max

{
sup
x∈ωn

d(x , ω), sup
x∈ω

d(x , ωn)

}
,

ω 7→ λ1(ω) is continuous but,

{ω : ω ⊂ Ω, ω measurable , |ω| = m} is not compact.

Supplementary constraints

Perimeter constraint, convex inclusions, number of connected
components, capacity conditions etc...make the constraint set compact
for the above topology cf. Bucur and Buttazzo, Henrot and Pierre.
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Plan The Problem Existence? Existence!

Existence-Difficulties ...continued

Change of Perspective

µ1(ν) := λ1(ω) if ν = αχΩ\ω
+ βχω , |ω| = m

Search for a Topology

Admissible set -C :=
{
ν : ν = αχΩ\ω

+ βχω , ω ⊂ Ω , |ω| = m
}

Any topology on C which gives pointwise a. e. convergence of ν a

priori renders it non-compact.

C relatively compact in L∞(Ω) for weak-∗ topology but µ1 not lower
semi-continuous.
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Plan The Problem Existence? Existence!

Existence-Difficulties ...continued

Options-Relaxation

Enlarge the solution space. Take
C :=

{
ν ∈ L∞(Ω) : α ≤ νβ ,

∫
Ω ν(x) dx = α(|Ω| −m) + βm

}

To find the lower-semicontinuous envelope of the functional µ1 on C
for the weak-∗ convergence on L∞(Ω).

Matrix formulation of the coefficients and a different notion of
matrix convergence (G - convergence )due to Spagnolo,
Murat-Tartar is involved in this description.

Solutions in this framework - show microstructure- studied by
Cox-Lipton ARMA ’96.
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Plan The Problem Existence? Existence!

Classical Solutions-Existence

Very few results are available.

One Dimension

Krĕin in 1955.

Uses the equivalence with the first eigenvalue problem for vibrating
strings.

µ1(ρ) = min
u∈H1

0 (Ω)

∫
L

0
|∇u|2(y)dy

∫ L

0 ρ(y)|u|2(y)dy

where ρ(y) = ν(T−1(y)) and T : [0, 1]→ [0, L] with

T (x) =

∫ x

0

1

ν(s)
ds .

ρ satisfies similar constraints. µ1 is continuous for weak-∗
convergence.

Precise minimizer consists in taking β in the middle. Shown by
symmetrization.
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Krĕin in 1955.

Uses the equivalence with the first eigenvalue problem for vibrating
strings.

µ1(ρ) = min
u∈H1

0 (Ω)

∫
L

0
|∇u|2(y)dy

∫ L

0 ρ(y)|u|2(y)dy

where ρ(y) = ν(T−1(y)) and T : [0, 1]→ [0, L] with

T (x) =

∫ x

0

1

ν(s)
ds .

ρ satisfies similar constraints. µ1 is continuous for weak-∗
convergence.

Precise minimizer consists in taking β in the middle. Shown by
symmetrization.

Carlos Conca , Rajesh Mahadevan , Leon Sanz An extremal eigenvalue problem for a two-phase conductor



Plan The Problem Existence? Existence!

Classical Solutions-Existence

Very few results are available.

One Dimension
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Classical Solutions-Existence...continued

Higher dimensions ?

Membrane Problem

Have existence for the “vibrating membrane problem” in any
dimension cf. Cox and McLaughlin Appl. Math. Optimization ’90.

In a ball, the solution has the same structure as in one-dimension.

In a symmetric domain one has symmetric minimizers. By
Symmetrization.

Conduction ←→ Membrane?

Is there a transformation which gives an equivalence between the
eigenvalue problems for conduction and membranes in dimensions ≥ 2?
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Classical Solutions-Existence...continued

Higher Dimensions - Balls

Theorem (Alvino, Lions, Trombetti Nonlin. Anal. ’89)

There exists a classical symmetric minimizer.

Proof

Requires a fine symmetrization result.
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Schwarz Symmetrization

Definition

Ω = B(0, 1), u : Ω→ R
+ bounded.

Ωc = {x ∈ Ω : f (x) ≥ c}, Ω∗
c = B(0, rc) , |Ω∗

c | = |Ωc |.

f ∗(x) := sup {c : x ∈ Ω∗
c
}.

(Equimeasurability) |{f ≥ c}| = |{f ∗ ≥ c}|.

(Isoperimetric inequality) P ({f ≥ c}) ≥ P ({f ∗ ≥ c}).

Consequences
∫

Ω

h(f (x)) dx =

∫

Ω

h(f ∗(x)) dx . In particular for h(s) = s2.

(Hardy-Littlewood Inequlaity)

∫

Ω

f (x)g(x) dx ≤

∫

Ω

f ∗(x)g∗(x) dx .

(Polya-Szëgo Inequality)

∫

Ω

|∇u|
2
(x) dx ≥

∫

Ω

|∇u∗|
2
(x) dx .
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Solution Strategy?

Extract minimizing sequences having symmetry.

Membrane Problem

ρn minimizing sequence ⇒ ρ∗
n

another minimizing sequence

µ1(ρn) =

∫
Ω
|∇un|

2(y)dy∫
Ω

ρn(y)|un|2(y)dy
≥

∫
Ω
|∇u∗

n
|2(y)dy∫

Ω
ρ∗

n
(y)|u∗

n
|2(y)dy

≥ µ1(ρn)

Conduction Problem

νn minimizing sequence ; ν∗
n

another minimizing sequence

Theorem (Alvino, Lions and Trombetti)

Given ν and u, there exists ν̃ radially symmetric with ν∗ = (ν̃)
∗

such that

∫

Ω

ν |∇u|
2
(x) dx ≥

∫

Ω

ν̃ |∇u∗|
2
(x) dx

A fine result proved using concentration compactness. Would
require dexterity to obtain this for other kinds of symmetrizations.
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Existence

Reduction

inf {λ1(ν) : ν ∈ C} = inf {λ1(ν) : ν ∈ Cs}

First Existence Result

Existence in
Ks :=

{
ν : ∃νn ∈ C

s , ν−1
n

∗
⇀ ν−1

}

as λ1 Ks is continuous for νn

r
→ ν ⇐⇒ ν−1

n

∗
⇀ ν−1.

Classical Existence

J : ν−1 7→
(
λ1(ν)

)−1
is a convex map on the convex set

{
ν−1 : ν ∈ Ks

}
.

There is always an extremum point which maximizes a convex function
on a convex set.
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Improvements

First existence result is in an enlarged set; Alvino, Lions and Trombetti
theorem may not extend to other symmetric domains.

Lemma-Alvino and Trombetti

Given ν and u, there exists ν̃ ∈ Ks such that
∫

Ω

ν |∇u|
2
(x) dx ≥

∫

Ω

ν̃ |∇u∗|
2
(x) dx

Reduction

inf {λ1(ν) : ν ∈ C} = min {λ1(ν) : ν ∈ Ks}

Observations

Proof of Alvino and Trombetti Lemma uses only the co-area formula,
the properties of symmetrization and the isoperimetric inequality.

We give a refined proof. Possible to change Schwarz symmetrization
for Steiner symmetrization. ⇒ existence of a symmetric minimizer.

Existence of a classical minimizer? uniqueness? exact shape? etc..
Carlos Conca , Rajesh Mahadevan , Leon Sanz An extremal eigenvalue problem for a two-phase conductor
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