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THE MONGE PROBLEM FOR STRICTLY CONVEX NORMS IN R?

THIERRY CHAMPION AND LUIGI DE PASCALE

ABsTRACT. We prove the existence of an optimal transport map for the Monge prob-
lem in a convex bounded subset of R? under the assumptions that the first marginal
is absolutely continuous with respect to the Lebesgue measure and that the cost is
given by a strictly convex norm. We propose a new approach which does not use
disintegration of measures.

1. INTRODUCTION

The Monge problem has origin in the Mémoire sur la théorie des déblais et remblais
written by G. Monge [22], and may be stated as follows:

inf{/Q |z — T(2)|dulz) : T € T(u, u)}, (1.1)

where € is the closure of a convex open subset of R?, |-| denotes the usual Euclidean norm
of R?, p,v are Borel probabilities on Q and T (w1, v) denotes the set of transport maps
from i to v, i.e. the class of Borel maps T such that Ty = v (i.e. Tyu(B) = u(T~Y(B))
for each Borel set B).

The main result of this paper is to prove the following existence result for a general-
ization of this problem:

Theorem 1.1. Let || -|| be a strictly conver norm on R? and assume that u is absolutely
continuous with respect to the Lebesque measure L, then the problem

min {/ |z = T(2)|ldp(z) : T € T(u, 1/)} (1.2)
Q
has at least one solution.

Before describing the previous results that we know on this problem and our contri-
bution on the subject, we make a brief introduction on the Kantorovich relaxation for
(1.2). For general probability measures the set of transport maps 7 (u, ) may be empty,
for example if g = dy and v = 1(8; + 6_1). But even when T (y,v) is non-empty it
may happen that problem (1.1) does not admit a minimizer in 7 (u, v): for example take
poi= Hi{o}x[o,l] and v := %(Hi{—l}x[o,l] + Hi{l}x[oﬂ). Moreover, the objective func-
tional of problem (1.2) is non-linear in 7" and the set 7 (u, ) does not possess the right
compactness properties to deal with the direct methods of the Calculus of Variations. A
suitable relaxation was introduced by Kantorovich [20, 21] and it proved to be a strong,
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decisive tool to deal with this problem. This relaxation is defined as follows. The set of
transport plans from p to v is defined as

I(p,v) ={y e PQxQ) | ﬂ'ﬁl’y =i, W?’y = v},

where 7¢ denotes the standard projection in the Cartesian product. The set II(u,v) is
always non-empty as it contains at least ¢ ® v. Then Kantorovich proposed to study the
problem

win{ [ o= sllarte) s 0 € )} (13)

Problem (1.3) is convex and linear in «y then the existence of a minimizer may be obtained
by the direct method of the Calculus of Variations. At this point, to obtain the existence
of a minimizer for (1.2) it is sufficient to prove that some solution v € II(p, v) of (1.3) is
in fact induced by a transport T' € T (u,v), i.e. may be written as v = (id x T')yp.

In [29], Sudakov devised an efficient strategy to solve (1.2) for a general norm || - ||
on R?. However this strategy involved a crucial step on the disintegration of an optimal
measure 7 for (1.3) which was not completed correctly at that time. In more recent years
the problem (1.1) has been solved first by Evans et al. [18] with additional regularity
assumptions on p and v, and then by Ambrosio [1| and Trudinger et al. [30] for p and
v with integrable density. For C? uniformly convex norms the problem (1.2) has been
solved by Caffarelli et al. [11] and Ambrosio et al. [3|, and finally for crystalline norms
in R? and general norms in R? by Ambrosio et al. [2]. The original proof of Sudakov was
based on the reduction of the transport problems to affine regions of smaller dimension,
and all the proof we listed above are based on the reduction of the problem to a 1-
dimensional problem via a change of variable or area-formula.

In this paper, we prove the existence of a solution to (1.2) for a general strictly convex
norm || - || on R?, without any regularity assumption on the norm || - ||. The originality of
our method for the proof of Theorem 1.1 above is that it does not require disintegration
of measures and relies on a simple but powerful regularity result (see Lemma 4.3 below)
which has been used in some transport problem with cost functional in non-integral form
[12]. In section §2 we recall some well known results on duality and optimality conditions
for problem (1.3). In section §3, we introduce a secondary transport problem in order
to select solutions (1.3) that have a particular regularity property. Section §4 is devoted
to the notion of regular points of a transport v and in particular to Lemma 4.3, which
states that a transport map v € II(u, ) is concentrated on a set of regular points. In
the following section §5, we take advantage of this fact to prove a regularity result on
the transport set associated to a solution of (1.3). The proof of our main result Theorem
1.1 is finally derived in §6, while a possible extension to the case of a general norm || - ||
is discussed in §7.

2. PRELIMINARY ON OPTIMAL TRANSPORTATION: DUALITY AND NECESSARY
CONDITIONS

The content of this section is classical (for example see [1, 31]). Problem (1.3) is convex
and linear, then classical convex duality brings useful information on its minimizers. In
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particular, the following duality theorem holds (for example we refer to Theorems 3.1.
and 3.3 in [3]).

Theorem 2.1. The minimum in problem (1.3) is equal to

wa{ [ yiuta) ~ [ carty) s ve i@} (2.1)

where Lipy (2, || - ||) is the set of functions v : Q — R which are 1-Lipschitz with respect
to the norm || - ||, i.e.

Vz,y €L, (@) —o()] < llz =yl

Moreover if w € Lipi(Q,]| - ||) is a mazimizer for problem (2.1) then v € (u,v) is a
minimizer of problem (1.3) if and only if

V(z,y) € supp~, u(z) —u(y) = [z —y||.

In the following, maximizers of (2.1) are referred to as Kantorovich transport potentials
for (2.1). If we follow the interpretation of v as a plan of transport we may deduce from
this last theorem that in order to realize an optimal transport the mass should follow
the direction of maximal slope of a Kantorovich transport potential u. We give a more
precise statement of this classical fact in Lemma 2.2 below, and give a short proof to
underline the role of the strict convexity of the norm.

Lemma 2.2. Assume that || - || is a strictly convex norm. Let v be an optimal transport
plan for (1.3), let uw € Lip1 (2, || - ||) be a Kantorovitch potential for (2.1) and let (x,y)
belong to supp(y) with x # y. If u is differentiable at x and z € Q is such that u(x) =
u(z) + ||z — z|| and z # x then

Z—x Yy—

lz ==l lly—al
Remark 2.3. In particular z, y and z are on the same line and z € [z,y] or y € [z, z].

Proof. Without loss of generality we may assume that z = 0. Since u € Lipi (€, || - ||),
we infer that

vt € [0,1], uw(0) = u(tz) +t|z|.

Since u is differentiable at 0, we then get Vu(0) - z = —||z||. On the other hand, for any
2" # 0 one also has Vu(0) -z > —||2'||. As a consequence, —Vu(0) belongs to the normal

cone of the closed convex set K := {2’ : ||| < 1} at ER

Since (x,y) € supp(y) and u is a Kantorovitch potential, —Vu(0) also belongs to
the normal cone of K at szTH Since K is strictly convex and has nonempty interior,
the intersection of the normal cones to two of its boundary points is empty unless they

coincide, so that we get % = £ O

=0 vl

Another crucial property of optimal transport plans is the cyclical monotonicity rel-
ative to the cost under consideration: we shall state this in a more general setting to
handle the secondary transport problem of the next section.
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Definition 2.4. Let ¢ : Q> — [0,+00]. A transport plan v € II(u,v) is cyclically
monotone for the cost ¢ (or c-cyclically) monotone if it is concentrated on a set C' such
that

n n

> elwiyi) <Y el Yo

i=1 i=1

for all n > 2, (z1,91),...,(n,yn) € C and any permutation o of {1,...,n}.

The following proposition gives a necessary condition for optimality in terms of cyclical
monotonicity; for a proof, we refer to Theorem 3.2 in [3].

Theorem 2.5. Let ¢ : Q2 — [0,+00] be a lower semicontinuous cost function, and
assume that the infimum of the corresponding transport problem is finite:

inf{/ c(x,y)dX : X e Il(u, 1/)} < +o00
19249/

If v is an optimal transport plan for this problem, then there exists a c-cyclically monotone
Borel set C' on which ¢ s finite and 7 is concentrated.

Remark 2.6. Duality and sufficiency of cyclical monotonicity may be pursued in very
general settings [24, 3, 28, 23, 7|, however for the purpose of this paper duality may be
obtained more easily and we refer the reader to |1, 31].

3. SECONDARY TRANSPORT PROBLEM TO SELECT MONOTONE TRANSPORT PLANS

Following the line of [2], we introduce a secondary transport problem to select optimal
transport plans for (1.3) which have some more regularity: in the next sections, we shall
prove that these particular optimal transport plans are induced by transport maps. The
idea that a secondary variational problem may help to choose “more regular” or particular
minimizers is the root of the idea of asymptotic development by I'-convergence (see [4]
and [5]) .

We denote by O1(u,v) the set of optimal transport plans for (1.3), and fix a Kan-
torovich transport potential @, i.e. a maximizer of (2.1). Let us define the new cost
e o=y if () = 7(y) + = — vl

=yt itulr) =uly) + ||z —yll,
Bla,y) := { +00 otherwise. (3.1)

We then consider the following transport problem:

min{ Bz, y)d\(z,y) : A€ (u, u)} : (3.2)
QxQ

Because of the characterization of the minimizers for (1.3) given in Theorem 2.1, it
appears that the above problem may be rewritten as

min{ Bz, y)dA(z,y) : A€ Ol(u,y)} .
QxQ

In other words, the problem (3.2) consists in minimizing the new cost functional A +—
J BdX among the minimizers of problem (1.3), and in this sense it may be considered as
a secondary variational problem.
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Definition 3.1. We shall denote by O2(u, v) the minimizers for (3.2).

By Theorem 2.5, the set Oz(u,v) is non-empty and any of its elements enjoy the
additional property of being concentrated on a set which is also §-cyclically monotone.
This implies the following monotonicity, whose proof is derived from that of Lemma 4.1
in [2].

Proposition 3.2. Let v be a minimizer of problem (3.2). Then ~ is concentrated on a
o-finite set I' with the following property:

\V/(.'E,y), (w/ayl) € F7 T e [xlay/] = (LL’ - xl) ’ (y - y/) > 0 (33)
where - denotes the usual scalar product on R®.

Proof. Applying Theorem 2.5, we get that «y is concentrated on a §-cyclically monotone
Borel set I' on which S is finite. Up to removing a ~-negligible set from I', we may
assume that I is o-finite.

Let (z,y), (2',y’) € T" be such that x € [2/,4/]. Since ~ is optimal for (1.3) and @ is a
Kantorovich potential for (2.1) we deduce that

u(z) =u(y) +lz -yl and (@) =uy)+ 2" =y

Since z € [2/,y/] we also have ||z — ¢/|| = |Jx — /|| + ||z — ¥/||, and then using the fact
that w € Lip1 (£, ] - ||) we have
a(@’) =a(y) + |z — 2’| + |z — ¢/l = u(z) + [l — 2|
and then again since w € Lipy (€2, || - ||) we infer that the above inequality is an equality,
so that
(@) =u(y) + |z -yl and (') =7u(2)+[lz - 2.
But then we also have w(z') = U(y) + ||z — y|| + ||z — 2’| so that u(2") = u(y) + [ly — 2.
It then follows that 8(z',y) = |z — y|? and B(x,y’) = |z — ¢/|>. Since I' is B-cyclically
monotone, we conclude
lz—y?+ |2’ =y < Jz—y P+ —y)?
which is equivalent to (z — ) - (y —y') > 0. O

Remark 3.3. The reason to deal with o-compact sets I', in the above proposition as well
as in the following, is that the projection 7!(I') is also o-compact, and in particular is a
Borel set.

4. A PROPERTY OF TRANSPORT PLANS

We begin by considering some general properties of transport plans. This section is
independent of the transport problem (1.3), and the definitions and techniques detailed
below are refinements of similar ones which were first applied in [12] in the framework
of non-classical transportation problems involving cost functionals not in integral form.

Definition 4.1. Let v € II(u, v) be a transport plan and I' a o-compact set on which it
is concentrated. For y € Q and r > 0 we define

Ffl(B(y,r)) = 7T1(F N (2 x B(y,r))).
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In other words, I'"*(B(y,r)) is the set of points whose mass is partially or completely
transported to B(y,r) by the restriction of v to I'.  We may justify this slight abuse
of notations by the fact that v should be thought of as a device that transports mass.
Notice also that I'~"}(B(y,r)) is a o-compact set.

Since this notion is important in the sequel, we recall that when A is £%-measurable,
one has

dANB
LA B, )
r—0  LAB(z,r))
for almost every x in A: we shall call such a point z a Lebesgue point of A, this
terminology deriving from the fact that such a point may also be considered as a Lebesgue

point of x 4. In the following, we shall denote by Leb(A) the set of points € A which
are Lebesgue points of A.

=1

Remark 4.2. In the definition of Lebesgue points, one may replace the open ball B(x,r)
by the set « + rC, where C' is a convex neighborhood of 0.

The following Lemma, although quite simple, is an important step in the proof of
Proposition 5.2 and Theorem 6.1 below. Its proof is a straightforward adaptation of
that of Lemma 5.2 from [12] and we detail it for the convenience of the reader.

Lemma 4.3. Let v € II(u,v) and T’ a o-compact set on which it is concentrated. If we
assume that p << L%, then ~y is concentrated on a o-compact set R(T') such that for all
(z,y) € R(T) the point  is a Lebesgue point of T=1(B(y,r)) for all r > 0.

Proof. Let
A:={(z,y) €T : ¢ Leb(I' Y(B(y,r))) for some r > 0};

we first intend to show that v(A) = 0. To this end, for each positive integer n we

consider a finite covering ) C U B(y;',my) by balls of radius ry, := % We notice that
i€l(n)

if (r,y) € T and x is not a Lebesgue point of I "}(B(y,r)) for some r > 0, then for any

n > L and y? such that |y? — y| < 7, the point 2 belongs to I'"}(B(y?,r,)) but is not

a Lebesgue point of this set. Then

c U U (07 B ) \ Lebr (Bl ra) )
n>1 iel(n)

Notice that the set on the right hand side has Lebesgue measure 0, and thus p-measure
0. It follows that v(A) < y(7'(A) x Q) = u(r'(A)) = 0.
Finally, since £L¢(r!(A)) = 0, there exists a sequence (Uy)g>o of open sets such that

Vk>0, w'(A)CU, and Jim LYU) = 0.
—00
Then the set R(T') := T m U (Q\ Ug) x Q) has the desired properties. O
k>0

The above Lemma yields us to introduce the following notion:
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Definition 4.4. The couple (z,y) € T' is a I'-reqular point if x is a Lebesgue point of

I'~Y(B(y,r)) for any positive r.

Notice that any element of the set R(I") of Lemma 4.3 is a I-regular point. Lemma 4.3
above therefore states that any transport plan I' is concentrated on a Borel set consisting
of regular points: this regularity property turns out to be a powerful tool in the study
of the support of optimal transport plans for problem (1.3), as the proof of Proposition
5.2 below illustrates.

5. A PROPERTY OF OPTIMAL TRANSPORT PLANS

In this section, we obtain a regularity result on the transport plans that are optimal for
problem (1.3). Following the formalism of [3], we first introduce the notions of transport
set related to a subset I' of R? x RY.

Definition 5.1. Let I" be a subset of R x R?, the transport set T'(T") of T is
(A=t tty| (@y) €T, te (0,1},

Notice that if T' is o-compact then T'(I") is also o-compact.

The following Proposition 5.2 gives a regularity property for optimal transport plans
for (1.3) in the case where || - || is a strictly convex norm. This property is obtained
using two principle ingredients. The first is the fact that an optimal transport plan is
concentrated on a set of regular points (see Lemma 4.3). The second ingredient relies on
the property of the Kantorovich potentials stated in Lemma 2.2 which allow to derive a
density estimate on the transport rays. This estimate is close to that stated in Lemma
5.4 of [6] (see also [8]) for the transport potential of the variational problem studied
therein.

Let us introduce some notations: let z,y € R? with x # y, we then denote by Py
the orthogonal projection on the line xy passing through x and y with respect to the
Euclidean norm. For A, ty,ts € R with A > 0 and ¢; < t3 we then define the following
portion of cylinder with axis xy:

Q(x,y,ty,ta, A) = {z cRY . (Ppy(2) — ) - H € [t1,ta] and |z — Ppy(2)] < A} )

We can now state the following regularity result.

Proposition 5.2. Assume that || - || is a strictly convex norm and u << L% Let also
v € (u,v) be an optimal transport plan for problem (1.8) and T' a o-compact set on
which v is concentrated. Then 7y is concentrated on a o-compact subset Rp(I') of R(T)
such that for any (x,y) € Rp(T') with x # y and for r > 0 small enough it holds

£2(T (T 0 Qs y) x By7)) N Qs (w,y)
lim inf =
6—0+ L (Q—i—é,r(x?y))
where for any § > 0 we set
1)
Q*(s,r(x: y) = Q(xa Y, _67 _57 7‘5) and Q+5,r(x7 y) = Q (.I', Y, 07 57 TdAr) .
with A, =1+ ﬁ

> 0 (5.1)
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Figure 1

Proof. Step 1: definition of Rp(T). Let u € Lip1(Q, || - ||) be a Kantorovich potential for
problem (1.3), and denote by Diff(u) the set of points of differentiability of u. Since w is
Lipschitz continuous in Q, Diff(u) has full Lebesgue measure in €2, so that there exists a
sequence (Uy)g>0 of open subsets of © such that

Vk>0,  (Q\Uy) CDiff(u) and lim LYU) = 0.
—00

We set
A= RT)n [ J@OQ\U) x Q.
k>0
and notice that A is a o-compact set which has full measure for «. In particular, 7' (A)

is also o-compact and it has full measure for g. Since £4(7!(A)\ Leb(7!(A))) = 0, there
exists a sequence (V})r>o of open subsets of {2 such that

Vk>0,  (7'(A)\Leb(x'(A))) c V4 and Jim £YV;) = 0.

We may now define
Rp(T) == An [J@\ W) x Q.
k>0

Then Rp(I") is a o-compact set which is included in R(I') and has full measure for ~.
Moreover, notice that if (z,y) € Rp(T) then = € Diff(u) and z is a Lebesgue point of
' (Rp(T)).

We shall prove that the set Rp(T") has the desired property.

Step 2: reduction of the proof. In the following, (Z,7) is an element of Rp(T') with
Z # 7, and we aim to show that for » > 0 small enough it holds

£ (7 (F N Qusr(@,9) % BG1)) N Qs (@)

lim inf — > 0 5.2
d—0+ ﬁd(QJré,r(xa y)) ( )
Without loss of generality we may assume that £ = 0 and % = % = ey is the first

vector of the canonical Euclidean basis of R?. If for s > 0 we denote by B4-1(0, s) the
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closed ball of R%! of center 0 and radius s, we can rewrite
Q-s,-(Z,9) = [—(5,—%] x B=1(0,70) and Qys,(2,9) = [0,0] x B&1(0,706A,).
Fix r > 0 and s > 0 small enough so that
n:=inf{ly — z| : = € [=s,s] x B&1(0,rsA,), y € B(y,r)} > 0. (5.3)

Since (O 7) € T, 0 is a Lebesgue point of I''(B(g,r)). Since 0 is also a Lebesgue
point of w!(Rp (T )), we infer that it is a Lebesgue point of the o-compact set R :=
I~Y(B(g,7)) N7 (Ry(T)). It then follows from the Fubini theorem, the definition of
Lebesgue points and remark 4.2 that for § €0, s[ small enough one has

L <{te [—6,0] : HIY (RN {t} x BSY(0,70)) > (ra) Lwa_ 1}) > gd

where wg_1 = L£97Y(B41(0,1)). We fix such a small enough § €]0,s[, and choose
ts € [0, —3] such that

1
HITY RN {ts} x B¥H0,r6)) > 5(7«5)61—1%_1.

We finally take a compact subset Rs of R N {ts} x B¥1(0,76) such that H¥~1(Rs) >
1(ré6)?'wy_1 and we shall now obtain a lower bound for

£ (T ARy x B(5,1)) N Qus(0,5) ) -

Step 3: an approzimation for T(I' N Rs x B(y,7)) on Q45,(0,7). Let {yr}r>0 be a
dense sequence in B(g,r), then for z € Q and N > 0 we set

M) = {k € (0reees N 5 uln) + =l = min () + o = 513 |

We now consider

N
Csn = U{(m,yk) sz € Rsand k€ My(z)}.

Notice that Cs y is a compact set and that 7r1(05 ~) = Rs. We finally set
Li=Qus,(0.5) n () U T(Csw)
K>0N>K
and we claim that L C T(I' NRs x B(7,7)) N Q45,(0,7). Indeed let = € L, then there
exists ©’ € Rs and 2’ € B(y,r) such that z € [2/, 2/] and

u(Z') + " = 2| = inf{u(ye) + 2" —will} = min {u(y) +[|z" —yl|}-
k=0 yEB(§,r)

Since ' € Rs € T=Y(B(y,)), we infer that there exists 3/ € B(7,r) such that (z/,7/) €
I'. As a consequence, one has

u(@) = u(y)+ 2"~y = min {uy) +[l2" —y[|}.
yEB(g,7)
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We thus obtain that u(z') = u(2’) + ||z’ — 2/|| and we conclude from Rs C Diff(u) and
Lemma 2.2 that either 2/ € [2/,y] or ¢/ € [2/,2/]. Therefore 2’ belongs to the line
passing through 2’ and ¢/, and then by (5.3) we get that x belongs to [2/, '] and thus

to T(I'NRs x B(y,7)) N Q45,(0,).
Step 4: a lower bound on LUT(Csn) N Q15,(0,7)). Fix N > 0, and define k €
{0,..., N} the Borel set
Dy:={re€Rs: k=min{j : j € My(z)}}.
For any k € {0,..., N} the cone T(Dy X {y}) with basis Dy and vertex y; is included
in T'(Cs n). We claim that these cones do not overlap:
kE#1 = T D x{y}) NT(D; x{y}) = 0.

We argue by contradiction and assume that for some k < I, x; € Dy and x; € D; there
exists z € [z, yx| N [x7, yi]. Then it follows from the definitions of Dy that

u(yr) + ek — yill < wly) + llze — will
and from k < [ and the definition of D; that

w(ye) + llze =yl < ulye) + llze — ywll-
We now compute

w(ye) + 1z =kl = wlye) + ller = yell = lzx — 2]
< um) + ok — il — llze — =]l
< uy) +llz —wll = wly) + llzr = wll =z = 2|
< ulyr) + llmr =yl =z — 2l < ulye) + 12 — vl

which is a contradiction and proves the claim.
We infer from the choice of A, t(see Figure 1) hat

T (D x {ye}) N[0,6] x R € Q44,(0, )

and then we get from (5.3) the following estimate:

VEE {0 NY LATD X (i} 0 Qusr(0,9)) 2 8 M (D)

Since the cones T'(Dy x {yr}) do not overlap, we obtain from the preceding that

N
d Y > n d—1 _ n d—1
EATCsN) N Qror0:5)) 2 65750 ) D) = 0o M (Rs)

and thus

LYT(Cs.n) N Qs (0,5)) > mﬂi_lédwd_l. (5.4)

Step 5. We now conclude the proof by noticing that
L= U TCsn)NQ15-(0,9)

K>0N>K

so that

1
[:d(L) > mAd_lﬁd(Q+6,r(oag))'
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We then infer from L C T(I' " Rs X B(y,7)) N Q+5,(0,7) that (5.2) holds. O

Remark 5.3. In the above proof, we only use the strict convexity of the norm || - || to
apply Lemma 2.2.

6. PROOF OF THE MAIN THEOREM

Now we are in position to prove Theorem 1.1 which is, in fact, a corollary of the
following more precise result.

Theorem 6.1. Assume that the norm || - || is strictly conver and p << L%. Then for
every v € Il(p,v) N Oo(p,v) there exists a map Ty, € T (u,v) such that v = (id x T )sp.
Moreover, the solution v € II(u,v) N Oa(p, v) is unique.

Proof. By Proposition 2.1 in [1], it is sufficient to prove that v is concentrated on a Borel
graph.

It follows from Proposition 3.2 that ~ is concentrated on a o-compact set I' satisfying
(3.3). We then apply Proposition 5.2 to get that 7 is concentrated on a o-compact subset
Rp(T") of R(T") satisfying (5.1).

We claim that Rp(I") is a contained in a graph. To prove this, we show that if (zo, o)
and (zo,y1) both belong to Rp(T") then yp = y;. We argue by contradiction, and then
we assume that y1 # yo. As a consequence, one either has (y1 — yo) - (Yo — xo) < 0 or
(yo —y1) - (y1 — xo) < 0. Without loss of generality, we assume that

(y1 —wo) - (yo —z0) < O.
We fix r > 0 small enough so that

Vo € Qyrr(20,y0), Vy' € B(yo,r), Yy € B(y1,r), (y—9)-(y —z) < 0. (6.1)

Since (zo,y1) € Ry(T), we infer that x¢ is a Lebesgue point for =1 (B(y;,7)). Moreover,
we also get from (xg,y0) € Rr(I") and (5.1) that

£l (T (F N Q-s5r(Z0,Y0) X B(yoﬂ“)) N Q+5,r(ffo,y0)>
lim inf
50+ LUQ s, (0,y0))

As a consequence, for 6 €]0,r[ small enough there exists (z/,3) and (z,y) in T' such
that

> 0

J,'/ € Q*é,?(m():y(])’ y/ € B(y07r)a U [13/7?/] N Q+5,7‘<$07y0) and Yy e B(ylar)'
It follows from (3.3) applied to (2’,y) and (z,y) that
(y—y) (x-2)=0

|

but since x € [2/,y'] one also has © — 2/ = [z=c (y' — x) and we get a contradiction with

Ty —a]
(6.1).

The uniqueness of v € II(u,v) N O2(u,v) is obtained as in Step 5 of the proof of
Theorem B in [2]: if 77 and ~2 are two such transport plans, then &2” also belongs
to II(w, v) N Oz, v). It follows from the preceding that these plans are all induced by
transport maps, which then coincide p almost everywhere.

O
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7. NORMS WHICH ARE NOT STRICTLY CONVEX AND FURTHER REMARKS

It is remarkable in the precedind proofs that the strict convexity assumption on the

norm || - || is only used through Lemma 2.2: as explained in the introduction of [2],
the direction of transportation is totally detemined at any point of differentiability of a
Kantorovich potential v when the the norm || - || is strictly convex, and this information

is sufficient to conclude in the proof of 5.2. Without this assumption, the optimality of
the transport plan v is not enough to obtain the density property of Proposition 5.2.
This is shown by the following example constructed in [2]:

Theorem 7.1 (Theorem A of [2]). There exist a Borel set M C [~1,1]3 with |[M| = 8
and two Borel maps f; : M — [—2,2] X [=2,2] for i =1,2 such that the following holds.
For x € M denote by l,, the segment connecting (fi(x), —2) to (fa(x),2) then

(1) {z} =1 N M forall x € M,

(2) luNly =0 for all x,y € M different.

To give a counterexample to Proposition 5.2 without the assumption of strict convexity
of || - ||, consider the map
T(@) = (folx),2)
and observe that, for the norm ||(z,y, 2)|| := max{|z|, |y|, 3|z|}, the map T is an optimal
transport map for (1.2) betwen pu = £4| M and v = Typ. However, the open transport
set T'(supp((id x T)yp)) has density 0 at every point of M.

A significant quantity related to the transport set is the so called transport density,
i.e. a positive measure ¢ which solves together with any transport potential the system

of PDEs ( )
—div(cDu) = p—v
{ |1Du|* =1 o —a.e.. (7.1)
The relationship between the transport density and the Monge-Kantorovich problem is
given by the following formula first discovered in [9]. Let v be an optimal transport plan,
and for each Borel set B C ) consider

O—’Y(B) = Hl(B N [:L‘,y]))d’y(x,y),
QxQ

then o, is a solution of (7.1) above. Clearly o, is supported on the transport set
T'(supp(7)). In practical terms the measure o (D) of a set D represents the work done
in the set D while transporting u to v following the plan . A detailed discussion of the
properties of such measures is beyond the scope of this paper. The transport density
plays a crucial role in the proof of existence given in [18] and good estimates from above
are available for o, |1, 14, 13, 15]. Proving some estimate from below for o, could be
interesting for the approach of this paper. In fact, assume for example that o, has an
L density a. (see for example |14, 18|) and that at a point  one has 0 < a-(x). Then
the lower density of the transport set T'(vy) at z satisfies 0,(T (supp(7)),x) > 0 because

a(z) = lim | (Supp(v))? (z,7)]
r—0 wqr war

a~(y)dy < liminf ||a~ ||co
i [, oy < mipt |

Because of the above example, we however can not expect an estimate from below on o
for any solution  of (1.3), but this may hold for example for an element of Os(pu, V).
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