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THE MONGE PROBLEM FOR STRICTLY CONVEX NORMS IN R
d

THIERRY CHAMPION AND LUIGI DE PASCALE

Abstra
t. We prove the existen
e of an optimal transport map for the Monge prob-

lem in a 
onvex bounded subset of R
d
under the assumptions that the �rst marginal

is absolutely 
ontinuous with respe
t to the Lebesgue measure and that the 
ost is

given by a stri
tly 
onvex norm. We propose a new approa
h whi
h does not use

disintegration of measures.

1. Introdu
tion

The Monge problem has origin in the Mémoire sur la théorie des déblais et remblais

written by G. Monge [22℄, and may be stated as follows:

inf

{
∫

Ω
|x− T (x)|dµ(x) : T ∈ T (µ, ν)

}

, (1.1)

where Ω is the 
losure of a 
onvex open subset of R
d
, |·| denotes the usual Eu
lidean norm

of R
d
, µ, ν are Borel probabilities on Ω and T (µ, ν) denotes the set of transport maps

from µ to ν, i.e. the 
lass of Borel maps T su
h that T♯µ = ν (i.e. T♯µ(B) := µ(T−1(B))
for ea
h Borel set B).

The main result of this paper is to prove the following existen
e result for a general-

ization of this problem:

Theorem 1.1. Let ‖ · ‖ be a stri
tly 
onvex norm on R
d
and assume that µ is absolutely


ontinuous with respe
t to the Lebesgue measure Ld
, then the problem

min

{
∫

Ω
‖x− T (x)‖dµ(x) : T ∈ T (µ, ν)

}

(1.2)

has at least one solution.

Before des
ribing the previous results that we know on this problem and our 
ontri-

bution on the subje
t, we make a brief introdu
tion on the Kantorovi
h relaxation for

(1.2). For general probability measures the set of transport maps T (µ, ν) may be empty,

for example if µ = δ0 and ν = 1
2(δ1 + δ−1). But even when T (µ, ν) is non-empty it

may happen that problem (1.1) does not admit a minimizer in T (µ, ν): for example take

µ := H1
⌊{0}×[0,1] and ν := 1

2(H
1
⌊{−1}×[0,1] + H1

⌊{1}×[0,1]). Moreover, the obje
tive fun
-

tional of problem (1.2) is non-linear in T and the set T (µ, ν) does not possess the right


ompa
tness properties to deal with the dire
t methods of the Cal
ulus of Variations. A

suitable relaxation was introdu
ed by Kantorovi
h [20, 21℄ and it proved to be a strong,
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de
isive tool to deal with this problem. This relaxation is de�ned as follows. The set of

transport plans from µ to ν is de�ned as

Π(µ, ν) := {γ ∈ P(Ω× Ω) | π1
♯ γ = µ, π2

♯ γ = ν},

where πi
denotes the standard proje
tion in the Cartesian produ
t. The set Π(µ, ν) is

always non-empty as it 
ontains at least µ⊗ν. Then Kantorovi
h proposed to study the

problem

min

{
∫

Ω×Ω
‖x− y‖dγ(x, y) : γ ∈ Π(µ, ν)

}

. (1.3)

Problem (1.3) is 
onvex and linear in γ then the existen
e of a minimizer may be obtained

by the dire
t method of the Cal
ulus of Variations. At this point, to obtain the existen
e

of a minimizer for (1.2) it is su�
ient to prove that some solution γ ∈ Π(µ, ν) of (1.3) is
in fa
t indu
ed by a transport T ∈ T (µ, ν), i.e. may be written as γ = (id× T )♯µ.

In [29℄, Sudakov devised an e�
ient strategy to solve (1.2) for a general norm ‖ · ‖
on R

d
. However this strategy involved a 
ru
ial step on the disintegration of an optimal

measure γ for (1.3) whi
h was not 
ompleted 
orre
tly at that time. In more re
ent years

the problem (1.1) has been solved �rst by Evans et al. [18℄ with additional regularity

assumptions on µ and ν, and then by Ambrosio [1℄ and Trudinger et al. [30℄ for µ and

ν with integrable density. For C2
uniformly 
onvex norms the problem (1.2) has been

solved by Ca�arelli et al. [11℄ and Ambrosio et al. [3℄, and �nally for 
rystalline norms

in R
d
and general norms in R

2
by Ambrosio et al. [2℄. The original proof of Sudakov was

based on the redu
tion of the transport problems to a�ne regions of smaller dimension,

and all the proof we listed above are based on the redu
tion of the problem to a 1-

dimensional problem via a 
hange of variable or area-formula.

In this paper, we prove the existen
e of a solution to (1.2) for a general stri
tly 
onvex

norm ‖ · ‖ on R
d
, without any regularity assumption on the norm ‖ · ‖. The originality of

our method for the proof of Theorem 1.1 above is that it does not require disintegration

of measures and relies on a simple but powerful regularity result (see Lemma 4.3 below)

whi
h has been used in some transport problem with 
ost fun
tional in non-integral form

[12℄. In se
tion �2 we re
all some well known results on duality and optimality 
onditions

for problem (1.3). In se
tion �3, we introdu
e a se
ondary transport problem in order

to sele
t solutions (1.3) that have a parti
ular regularity property. Se
tion �4 is devoted

to the notion of regular points of a transport γ and in parti
ular to Lemma 4.3, whi
h

states that a transport map γ ∈ Π(µ, ν) is 
on
entrated on a set of regular points. In

the following se
tion �5, we take advantage of this fa
t to prove a regularity result on

the transport set asso
iated to a solution of (1.3). The proof of our main result Theorem

1.1 is �nally derived in �6, while a possible extension to the 
ase of a general norm ‖ · ‖
is dis
ussed in �7.

2. Preliminary on optimal transportation: duality and ne
essary


onditions

The 
ontent of this se
tion is 
lassi
al (for example see [1, 31℄). Problem (1.3) is 
onvex

and linear, then 
lassi
al 
onvex duality brings useful information on its minimizers. In
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parti
ular, the following duality theorem holds (for example we refer to Theorems 3.1.

and 3.3 in [3℄).

Theorem 2.1. The minimum in problem (1.3) is equal to

max

{
∫

Ω
v(x)dµ(x)−

∫

Ω
v(y)dν(y) : v ∈ Lip1(Ω, ‖ · ‖)

}

(2.1)

where Lip1(Ω, ‖ · ‖) is the set of fun
tions v : Ω → R whi
h are 1-Lips
hitz with respe
t

to the norm ‖ · ‖, i.e.

∀x, y ∈ Ω, |v(x)− v(y)| ≤ ‖x− y‖.

Moreover if u ∈ Lip1(Ω, ‖ · ‖) is a maximizer for problem (2.1) then γ ∈ Π(µ, ν) is a

minimizer of problem (1.3) if and only if

∀(x, y) ∈ supp γ, u(x)− u(y) = ‖x− y‖.

In the following, maximizers of (2.1) are referred to as Kantorovi
h transport potentials

for (2.1). If we follow the interpretation of γ as a plan of transport we may dedu
e from

this last theorem that in order to realize an optimal transport the mass should follow

the dire
tion of maximal slope of a Kantorovi
h transport potential u. We give a more

pre
ise statement of this 
lassi
al fa
t in Lemma 2.2 below, and give a short proof to

underline the role of the stri
t 
onvexity of the norm.

Lemma 2.2. Assume that ‖ · ‖ is a stri
tly 
onvex norm. Let γ be an optimal transport

plan for (1.3), let u ∈ Lip1(Ω, ‖ · ‖) be a Kantorovit
h potential for (2.1) and let (x, y)
belong to supp(γ) with x 6= y. If u is di�erentiable at x and z ∈ Ω is su
h that u(x) =
u(z) + ‖z − x‖ and z 6= x then

z − x

‖z − x‖
=

y − x

‖y − x‖
.

Remark 2.3. In parti
ular x, y and z are on the same line and z ∈ [x, y] or y ∈ [x, z].

Proof. Without loss of generality we may assume that x = 0. Sin
e u ∈ Lip1(Ω, ‖ · ‖),
we infer that

∀t ∈ [0, 1], u(0) = u(tz) + t ‖z‖.

Sin
e u is di�erentiable at 0, we then get ∇u(0) · z = −‖z‖. On the other hand, for any

z′ 6= 0 one also has ∇u(0) ·z′ ≥ −‖z′‖. As a 
onsequen
e, −∇u(0) belongs to the normal


one of the 
losed 
onvex set K := {z′ : ‖z′‖ ≤ 1} at

z

‖z‖ .

Sin
e (x, y) ∈ supp(γ) and u is a Kantorovit
h potential, −∇u(0) also belongs to

the normal 
one of K at

y

‖y‖ . Sin
e K is stri
tly 
onvex and has nonempty interior,

the interse
tion of the normal 
ones to two of its boundary points is empty unless they


oin
ide, so that we get

z

‖z‖ = y

‖y‖ . �

Another 
ru
ial property of optimal transport plans is the 
y
li
al monotoni
ity rel-

ative to the 
ost under 
onsideration: we shall state this in a more general setting to

handle the se
ondary transport problem of the next se
tion.
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De�nition 2.4. Let c : Ω2 → [0,+∞]. A transport plan γ ∈ Π(µ, ν) is 
y
li
ally

monotone for the 
ost c (or c-
y
li
ally) monotone if it is 
on
entrated on a set C su
h

that

n
∑

i=1

c(xi, yi) ≤
n
∑

i=1

c(xi, yσ(i))

for all n ≥ 2, (x1, y1), . . . , (xn, yn) ∈ C and any permutation σ of {1, . . . , n}.

The following proposition gives a ne
essary 
ondition for optimality in terms of 
y
li
al

monotoni
ity; for a proof, we refer to Theorem 3.2 in [3℄.

Theorem 2.5. Let c : Ω2 → [0,+∞] be a lower semi
ontinuous 
ost fun
tion, and

assume that the in�mum of the 
orresponding transport problem is �nite:

inf

{
∫

Ω×Ω
c(x, y)dλ : λ ∈ Π(µ, ν)

}

< +∞

If γ is an optimal transport plan for this problem, then there exists a c-
y
li
ally monotone

Borel set C on whi
h c is �nite and γ is 
on
entrated.

Remark 2.6. Duality and su�
ien
y of 
y
li
al monotoni
ity may be pursued in very

general settings [24, 3, 28, 23, 7℄, however for the purpose of this paper duality may be

obtained more easily and we refer the reader to [1, 31℄.

3. Se
ondary transport problem to sele
t monotone transport plans

Following the line of [2℄, we introdu
e a se
ondary transport problem to sele
t optimal

transport plans for (1.3) whi
h have some more regularity: in the next se
tions, we shall

prove that these parti
ular optimal transport plans are indu
ed by transport maps. The

idea that a se
ondary variational problem may help to 
hoose �more regular� or parti
ular

minimizers is the root of the idea of asymptoti
 development by Γ-
onvergen
e (see [4℄

and [5℄) .

We denote by O1(µ, ν) the set of optimal transport plans for (1.3), and �x a Kan-

torovi
h transport potential u, i.e. a maximizer of (2.1). Let us de�ne the new 
ost

fun
tion

β(x, y) :=

{

|x− y|2 if u(x) = u(y) + ‖x− y‖,
+∞ otherwise.

(3.1)

We then 
onsider the following transport problem:

min

{
∫

Ω×Ω
β(x, y)dλ(x, y) : λ ∈ Π(µ, ν)

}

. (3.2)

Be
ause of the 
hara
terization of the minimizers for (1.3) given in Theorem 2.1, it

appears that the above problem may be rewritten as

min

{
∫

Ω×Ω
β(x, y)dλ(x, y) : λ ∈ O1(µ, ν)

}

.

In other words, the problem (3.2) 
onsists in minimizing the new 
ost fun
tional λ 7→
∫

βdλ among the minimizers of problem (1.3), and in this sense it may be 
onsidered as

a se
ondary variational problem.
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De�nition 3.1. We shall denote by O2(µ, ν) the minimizers for (3.2).

By Theorem 2.5, the set O2(µ, ν) is non-empty and any of its elements enjoy the

additional property of being 
on
entrated on a set whi
h is also β-
y
li
ally monotone.

This implies the following monotoni
ity, whose proof is derived from that of Lemma 4.1

in [2℄.

Proposition 3.2. Let γ be a minimizer of problem (3.2). Then γ is 
on
entrated on a

σ-�nite set Γ with the following property:

∀(x, y), (x′, y′) ∈ Γ, x ∈ [x′, y′] ⇒ (x− x′) · (y − y′) ≥ 0 (3.3)

where · denotes the usual s
alar produ
t on R
d
.

Proof. Applying Theorem 2.5, we get that γ is 
on
entrated on a β-
y
li
ally monotone

Borel set Γ on whi
h β is �nite. Up to removing a γ-negligible set from Γ, we may

assume that Γ is σ-�nite.

Let (x, y), (x′, y′) ∈ Γ be su
h that x ∈ [x′, y′]. Sin
e γ is optimal for (1.3) and u is a

Kantorovi
h potential for (2.1) we dedu
e that

u(x) = u(y) + ‖x− y‖ and u(x′) = u(y′) + ‖x′ − y′‖.

Sin
e x ∈ [x′, y′] we also have ‖x′ − y′‖ = ‖x − x′‖ + ‖x − y′‖, and then using the fa
t

that u ∈ Lip1(Ω, ‖ · ‖) we have

u(x′) = u(y′) + ‖x− x′‖+ ‖x− y′‖ ≥ u(x) + ‖x− x′‖

and then again sin
e u ∈ Lip1(Ω, ‖ · ‖) we infer that the above inequality is an equality,

so that

u(x) = u(y′) + ‖x− y′‖ and u(x′) = u(x) + ‖x− x′‖.

But then we also have u(x′) = u(y)+ ‖x− y‖+ ‖x−x′‖ so that u(x′) = u(y)+ ‖y−x′‖.
It then follows that β(x′, y) = |x − y|2 and β(x, y′) = |x − y′|2. Sin
e Γ is β-
y
li
ally

monotone, we 
on
lude

|x− y|2 + |x′ − y′|2 ≤ |x− y′|2 + |x′ − y|2

whi
h is equivalent to (x− x′) · (y − y′) ≥ 0. �

Remark 3.3. The reason to deal with σ-
ompa
t sets Γ, in the above proposition as well

as in the following, is that the proje
tion π1(Γ) is also σ-
ompa
t, and in parti
ular is a

Borel set.

4. A property of transport plans

We begin by 
onsidering some general properties of transport plans. This se
tion is

independent of the transport problem (1.3), and the de�nitions and te
hniques detailed

below are re�nements of similar ones whi
h were �rst applied in [12℄ in the framework

of non-
lassi
al transportation problems involving 
ost fun
tionals not in integral form.

De�nition 4.1. Let γ ∈ Π(µ, ν) be a transport plan and Γ a σ-
ompa
t set on whi
h it

is 
on
entrated. For y ∈ Ω and r > 0 we de�ne

Γ−1(B(y, r)) := π1(Γ ∩ (Ω×B(y, r))).
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In other words, Γ−1(B(y, r)) is the set of points whose mass is partially or 
ompletely

transported to B(y, r) by the restri
tion of γ to Γ. We may justify this slight abuse

of notations by the fa
t that γ should be thought of as a devi
e that transports mass.

Noti
e also that Γ−1(B(y, r)) is a σ-
ompa
t set.

Sin
e this notion is important in the sequel, we re
all that when A is Ld
-measurable,

one has

lim
r→0

Ld(A ∩B(x, r))

Ld(B(x, r))
= 1

for almost every x in A: we shall 
all su
h a point x a Lebesgue point of A, this

terminology deriving from the fa
t that su
h a point may also be 
onsidered as a Lebesgue

point of χA. In the following, we shall denote by Leb(A) the set of points x ∈ A whi
h

are Lebesgue points of A.

Remark 4.2. In the de�nition of Lebesgue points, one may repla
e the open ball B(x, r)
by the set x+ rC, where C is a 
onvex neighborhood of 0.

The following Lemma, although quite simple, is an important step in the proof of

Proposition 5.2 and Theorem 6.1 below. Its proof is a straightforward adaptation of

that of Lemma 5.2 from [12℄ and we detail it for the 
onvenien
e of the reader.

Lemma 4.3. Let γ ∈ Π(µ, ν) and Γ a σ-
ompa
t set on whi
h it is 
on
entrated. If we

assume that µ << Ld
, then γ is 
on
entrated on a σ-
ompa
t set R(Γ) su
h that for all

(x, y) ∈ R(Γ) the point x is a Lebesgue point of Γ−1(B(y, r)) for all r > 0.

Proof. Let

A := {(x, y) ∈ Γ : x /∈ Leb(Γ−1(B(y, r))) for some r > 0};

we �rst intend to show that γ(A) = 0. To this end, for ea
h positive integer n we


onsider a �nite 
overing Ω ⊂
⋃

i∈I(n)

B(yni , rn) by balls of radius rn := 1
2n . We noti
e that

if (x, y) ∈ Γ and x is not a Lebesgue point of Γ−1(B(y, r)) for some r > 0, then for any

n ≥ 1
r
and yni su
h that |yni − y| < rn the point x belongs to Γ−1(B(yni , rn)) but is not

a Lebesgue point of this set. Then

π1(A) ⊂
⋃

n≥1

⋃

i∈I(n)

(

Γ−1(B(yni , rn)) \ Leb(Γ
−1(B(yni , rn)))

)

.

Noti
e that the set on the right hand side has Lebesgue measure 0, and thus µ-measure

0. It follows that γ(A) ≤ γ(π1(A)× Ω) = µ(π1(A)) = 0.
Finally, sin
e Ld(π1(A)) = 0, there exists a sequen
e (Uk)k≥0 of open sets su
h that

∀k ≥ 0, π1(A) ⊂ Uk and lim
k→∞

Ld(Uk) = 0.

Then the set R(Γ) := Γ
⋂

(
⋃

k≥0

(Ω \ Uk)× Ω) has the desired properties. �

The above Lemma yields us to introdu
e the following notion:
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De�nition 4.4. The 
ouple (x, y) ∈ Γ is a Γ-regular point if x is a Lebesgue point of

Γ−1(B(y, r)) for any positive r.

Noti
e that any element of the set R(Γ) of Lemma 4.3 is a Γ-regular point. Lemma 4.3

above therefore states that any transport plan Γ is 
on
entrated on a Borel set 
onsisting

of regular points: this regularity property turns out to be a powerful tool in the study

of the support of optimal transport plans for problem (1.3), as the proof of Proposition

5.2 below illustrates.

5. A property of optimal transport plans

In this se
tion, we obtain a regularity result on the transport plans that are optimal for

problem (1.3). Following the formalism of [3℄, we �rst introdu
e the notions of transport

set related to a subset Γ of R
d × R

d
.

De�nition 5.1. Let Γ be a subset of R
d × R

d
, the transport set T (Γ) of Γ is

{(1− t)x+ ty | (x, y) ∈ Γ, t ∈ (0, 1)}.

Noti
e that if Γ is σ-
ompa
t then T (Γ) is also σ-
ompa
t.

The following Proposition 5.2 gives a regularity property for optimal transport plans

for (1.3) in the 
ase where ‖ · ‖ is a stri
tly 
onvex norm. This property is obtained

using two prin
iple ingredients. The �rst is the fa
t that an optimal transport plan is


on
entrated on a set of regular points (see Lemma 4.3). The se
ond ingredient relies on

the property of the Kantorovi
h potentials stated in Lemma 2.2 whi
h allow to derive a

density estimate on the transport rays. This estimate is 
lose to that stated in Lemma

5.4 of [6℄ (see also [8℄) for the transport potential of the variational problem studied

therein.

Let us introdu
e some notations: let x, y ∈ R
d
with x 6= y, we then denote by Pxy

the orthogonal proje
tion on the line xy passing through x and y with respe
t to the

Eu
lidean norm. For ∆, t1, t2 ∈ R with ∆ > 0 and t1 < t2 we then de�ne the following

portion of 
ylinder with axis xy:

Q(x, y, t1, t2,∆) :=

{

z ∈ R
d : (Pxy(z)− x) ·

(y − x)

|y − x|
∈ [t1, t2] and |z − Pxy(z)| ≤ ∆

}

.

We 
an now state the following regularity result.

Proposition 5.2. Assume that ‖ · ‖ is a stri
tly 
onvex norm and µ << Ld
. Let also

γ ∈ Π(µ, ν) be an optimal transport plan for problem (1.3) and Γ a σ-
ompa
t set on

whi
h γ is 
on
entrated. Then γ is 
on
entrated on a σ-
ompa
t subset RT (Γ) of R(Γ)
su
h that for any (x, y) ∈ RT (Γ) with x 6= y and for r > 0 small enough it holds

lim inf
δ→0+

Ld
(

T
(

Γ ∩ Q−δ,r(x, y)×B(y, r)
)

∩Q+δ,r(x, y)
)

Ld(Q+δ,r(x, y))
> 0 (5.1)

where for any δ > 0 we set

Q−δ,r(x, y) := Q(x, y,−δ,−
δ

2
, rδ) and Q+δ,r(x, y) := Q (x, y, 0, δ, rδ∆r) .

with ∆r := 1 + 2
|y−x| .
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rδ∆r rδ

δ
2

δ

Q−δ,r(x̃, ỹ)

Q+δ,r(x̃, ỹ)

r

ỹ
x̃

Figure 1

Proof. Step 1: de�nition of RT (Γ). Let u ∈ Lip1(Ω, ‖ · ‖) be a Kantorovi
h potential for

problem (1.3), and denote by Di�(u) the set of points of di�erentiability of u. Sin
e u is

Lips
hitz 
ontinuous in Ω, Di�(u) has full Lebesgue measure in Ω, so that there exists a

sequen
e (Uk)k≥0 of open subsets of Ω su
h that

∀k ≥ 0, (Ω \ Uk) ⊂ Di�(u) and lim
k→∞

Ld(Uk) = 0.

We set

A := R(Γ) ∩
⋃

k≥0

(Ω \ Uk)× Ω.

and noti
e that A is a σ-
ompa
t set whi
h has full measure for γ. In parti
ular, π1(A)
is also σ-
ompa
t and it has full measure for µ. Sin
e Ld(π1(A)\Leb(π1(A))) = 0, there
exists a sequen
e (Vk)k≥0 of open subsets of Ω su
h that

∀k ≥ 0, (π1(A) \ Leb(π1(A))) ⊂ Vk and lim
k→∞

Ld(Vk) = 0.

We may now de�ne

RT (Γ) := A ∩
⋃

k≥0

(Ω \ Vk)× Ω.

Then RT (Γ) is a σ-
ompa
t set whi
h is in
luded in R(Γ) and has full measure for γ.

Moreover, noti
e that if (x, y) ∈ RT (Γ) then x ∈ Di�(u) and x is a Lebesgue point of

π1(RT (Γ)).
We shall prove that the set RT (Γ) has the desired property.

Step 2: redu
tion of the proof. In the following, (x̃, ỹ) is an element of RT (Γ) with
x̃ 6= ỹ, and we aim to show that for r > 0 small enough it holds

lim inf
δ→0+

Ld
(

T
(

Γ ∩ Q−δ,r(x̃, ỹ)×B(ỹ, r)
)

∩Q+δ,r(x̃, ỹ)
)

Ld(Q+δ,r(x̃, ỹ))
> 0 (5.2)

Without loss of generality we may assume that x̃ = 0 and

ỹ−x̃
|ỹ−x̃| =

ỹ
|ỹ| = e1 is the �rst

ve
tor of the 
anoni
al Eu
lidean basis of R
d
. If for s > 0 we denote by Bd−1(0, s) the
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losed ball of R
d−1

of 
enter 0 and radius s, we 
an rewrite

Q−δ,r(x̃, ỹ) = [−δ,−
δ

2
]×Bd−1(0, rδ) and Q+δ,r(x̃, ỹ) = [0, δ]×Bd−1(0, rδ∆r).

Fix r > 0 and s > 0 small enough so that

η := inf{|y − x| : x ∈ [−s, s]×Bd−1(0, rs∆r), y ∈ B(ỹ, r)} > 0. (5.3)

Sin
e (0, ỹ) ∈ Γ, 0 is a Lebesgue point of Γ−1(B(ỹ, r)). Sin
e 0 is also a Lebesgue

point of π1(RT (Γ)), we infer that it is a Lebesgue point of the σ-
ompa
t set R :=

Γ−1(B(ỹ, r)) ∩ π1(RT (Γ)). It then follows from the Fubini theorem, the de�nition of

Lebesgue points and remark 4.2 that for δ ∈ ]0, s[ small enough one has

L1

({

t ∈ [−δ, δ] : Hd−1(R∩ {t} ×Bd−1(0, rδ)) ≥
1

2
(rδ)d−1ωd−1

})

≥
8

5
δ

where ωd−1 = Ld−1(Bd−1(0, 1)). We �x su
h a small enough δ ∈ ]0, s[ , and 
hoose

tδ ∈ [−δ,− δ
2 ] su
h that

Hd−1(R∩ {tδ} ×Bd−1(0, rδ)) ≥
1

2
(rδ)d−1ωd−1.

We �nally take a 
ompa
t subset Rδ of R ∩ {tδ} × Bd−1(0, rδ) su
h that Hd−1(Rδ) ≥
1
4(rδ)

d−1ωd−1 and we shall now obtain a lower bound for

Ld
(

T (Γ ∩Rδ ×B(ỹ, r)) ∩Q+δ,r(0, ỹ)
)

.

Step 3: an approximation for T (Γ ∩ Rδ × B(ỹ, r)) on Q+δ,r(0, ỹ). Let {yk}k≥0 be a

dense sequen
e in B(ỹ, r), then for x ∈ Ω and N ≥ 0 we set

MN (x) :=

{

k ∈ {0, . . . , N} : u(yk) + ‖x− yk‖ = min
0≤j≤N

{u(yj) + ‖x− yj‖}

}

.

We now 
onsider

Cδ,N :=
N
⋃

k=0

{(x, yk) : x ∈ Rδ and k ∈ MN (x)}.

Noti
e that Cδ,N is a 
ompa
t set and that π1(Cδ,N ) = Rδ. We �nally set

L := Q+δ,r(0, ỹ) ∩
⋂

K≥0

⋃

N≥K

T (Cδ,N )

and we 
laim that L ⊂ T (Γ ∩ Rδ × B(ỹ, r)) ∩Q+δ,r(0, ỹ). Indeed let x ∈ L, then there

exists x′ ∈ Rδ and z′ ∈ B(ỹ, r) su
h that x ∈ [x′, z′] and

u(z′) + ‖x′ − z′‖ = inf
k≥0

{u(yk) + ‖x′ − yk‖} = min
y∈B(ỹ,r)

{u(y) + ‖x′ − y‖}.

Sin
e x′ ∈ Rδ ⊂ Γ−1(B(ỹ, r)), we infer that there exists y′ ∈ B(ỹ, r) su
h that (x′, y′) ∈
Γ. As a 
onsequen
e, one has

u(x′) = u(y′) + ‖x′ − y′‖ = min
y∈B(ỹ,r)

{u(y) + ‖x′ − y‖}.
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We thus obtain that u(x′) = u(z′) + ‖x′ − z′‖ and we 
on
lude from Rδ ⊂ Di�(u) and
Lemma 2.2 that either z′ ∈ [x′, y′] or y′ ∈ [x′, z′]. Therefore z′ belongs to the line

passing through x′ and y′, and then by (5.3) we get that x belongs to [x′, y′] and thus

to T (Γ ∩Rδ ×B(ỹ, r)) ∩Q+δ,r(0, ỹ).

Step 4: a lower bound on Ld(T (Cδ,N ) ∩ Q+δ,r(0, ỹ)). Fix N ≥ 0, and de�ne k ∈
{0, . . . , N} the Borel set

Dk := {x ∈ Rδ : k = min{j : j ∈ MN (x)}} .

For any k ∈ {0, . . . , N} the 
one T (Dk × {yk}) with basis Dk and vertex yk is in
luded

in T (Cδ,N ). We 
laim that these 
ones do not overlap:

k 6= l ⇒ T (Dk × {yk}) ∩ T (Dl × {yl}) = ∅.

We argue by 
ontradi
tion and assume that for some k < l, xk ∈ Dk and xl ∈ Dl there

exists z ∈ [xk, yk] ∩ [xl, yl]. Then it follows from the de�nitions of Dk that

u(yk) + ‖xk − yk‖ ≤ u(yl) + ‖xk − yl‖

and from k < l and the de�nition of Dl that

u(yl) + ‖xl − yl‖ < u(yk) + ‖xl − yk‖.

We now 
ompute

u(yk) + ‖z − yk‖ = u(yk) + ‖xk − yk‖ − ‖xk − z‖

≤ u(yl) + ‖xk − yl‖ − ‖xk − z‖

≤ u(yl) + ‖z − yl‖ = u(yl) + ‖xl − yl‖ − ‖xl − z‖

< u(yk) + ‖xl − yk‖ − ‖xl − z‖ ≤ u(yk) + ‖z − yk‖

whi
h is a 
ontradi
tion and proves the 
laim.

We infer from the 
hoi
e of ∆r t(see Figure 1) hat

T (Dk × {yk}) ∩ [0, δ]× R
d−1 ⊂ Q+δ,r(0, ỹ)

and then we get from (5.3) the following estimate:

∀k ∈ {0, . . . , N}, Ld(T (Dk × {yk}) ∩Q+δ,r(0, ỹ))) ≥ δ
η

η + 2s
Hd−1(Dk).

Sin
e the 
ones T (Dk × {yk}) do not overlap, we obtain from the pre
eding that

Ld(T (Cδ,N ) ∩Q+δ,r(0, ỹ)) ≥ δ
η

η + 2s

N
∑

k=0

Hd−1(Dk) = δ
η

η + 2s
Hd−1(Rδ)

and thus

Ld(T (Cδ,N ) ∩Q+δ,r(0, ỹ)) ≥
η

4(η + 2s)
rd−1 δd ωd−1. (5.4)

Step 5. We now 
on
lude the proof by noti
ing that

L =
⋂

K≥0

⋃

N≥K

T (Cδ,N ) ∩Q+δ,r(0, ỹ)

so that

Ld(L) ≥
η

4(η + 2s)

1

∆d−1
r

Ld(Q+δ,r(0, ỹ)).
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We then infer from L ⊂ T (Γ ∩Rδ ×B(ỹ, r)) ∩Q+δ,r(0, ỹ) that (5.2) holds. �

Remark 5.3. In the above proof, we only use the stri
t 
onvexity of the norm ‖ · ‖ to

apply Lemma 2.2.

6. Proof of the main theorem

Now we are in position to prove Theorem 1.1 whi
h is, in fa
t, a 
orollary of the

following more pre
ise result.

Theorem 6.1. Assume that the norm ‖ · ‖ is stri
tly 
onvex and µ << Ld
. Then for

every γ ∈ Π(µ, ν) ∩ O2(µ, ν) there exists a map Tγ ∈ T (µ, ν) su
h that γ = (id× Tγ)♯µ.
Moreover, the solution γ ∈ Π(µ, ν) ∩ O2(µ, ν) is unique.

Proof. By Proposition 2.1 in [1℄, it is su�
ient to prove that γ is 
on
entrated on a Borel

graph.

It follows from Proposition 3.2 that γ is 
on
entrated on a σ-
ompa
t set Γ satisfying

(3.3). We then apply Proposition 5.2 to get that γ is 
on
entrated on a σ-
ompa
t subset

RT (Γ) of R(Γ) satisfying (5.1).

We 
laim that RT (Γ) is a 
ontained in a graph. To prove this, we show that if (x0, y0)
and (x0, y1) both belong to RT (Γ) then y0 = y1. We argue by 
ontradi
tion, and then

we assume that y1 6= y0. As a 
onsequen
e, one either has (y1 − y0) · (y0 − x0) < 0 or

(y0 − y1) · (y1 − x0) < 0. Without loss of generality, we assume that

(y1 − y0) · (y0 − x0) < 0.

We �x r > 0 small enough so that

∀x ∈ Q+r,r(x0, y0), ∀y
′ ∈ B(y0, r), ∀y ∈ B(y1, r), (y − y′) · (y′ − x) < 0. (6.1)

Sin
e (x0, y1) ∈ RT (Γ), we infer that x0 is a Lebesgue point for Γ
−1(B(y1, r)). Moreover,

we also get from (x0, y0) ∈ RT (Γ) and (5.1) that

lim inf
δ→0+

Ld
(

T
(

Γ ∩ Q−δ,r(x0, y0)×B(y0, r)
)

∩Q+δ,r(x0, y0)
)

Ld(Q+δ,r(x0, y0))
> 0

As a 
onsequen
e, for δ ∈ ]0, r[ small enough there exists (x′, y′) and (x, y) in Γ su
h

that

x′ ∈ Q−δ,r(x0, y0), y′ ∈ B(y0, r), x ∈ [x′, y′] ∩Q+δ,r(x0, y0) and y ∈ B(y1, r).

It follows from (3.3) applied to (x′, y′) and (x, y) that

(y − y′) · (x− x′) ≥ 0

but sin
e x ∈ [x′, y′] one also has x− x′ = |x−x′|
|y′−x| (y

′ − x) and we get a 
ontradi
tion with

(6.1).

The uniqueness of γ ∈ Π(µ, ν) ∩ O2(µ, ν) is obtained as in Step 5 of the proof of

Theorem B in [2℄: if γ1 and γ2 are two su
h transport plans, then

γ1+γ2
2 also belongs

to Π(µ, ν) ∩ O2(µ, ν). It follows from the pre
eding that these plans are all indu
ed by

transport maps, whi
h then 
oin
ide µ almost everywhere.

�
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7. Norms whi
h are not stri
tly 
onvex and further remarks

It is remarkable in the pre
edind proofs that the stri
t 
onvexity assumption on the

norm ‖ · ‖ is only used through Lemma 2.2: as explained in the introdu
tion of [2℄,

the dire
tion of transportation is totally detemined at any point of di�erentiability of a

Kantorovi
h potential u when the the norm ‖ · ‖ is stri
tly 
onvex, and this information

is su�
ient to 
on
lude in the proof of 5.2. Without this assumption, the optimality of

the transport plan γ is not enough to obtain the density property of Proposition 5.2.

This is shown by the following example 
onstru
ted in [2℄:

Theorem 7.1 (Theorem A of [2℄). There exist a Borel set M ⊂ [−1, 1]3 with |M | = 8
and two Borel maps fi : M → [−2, 2]× [−2, 2] for i = 1, 2 su
h that the following holds.

For x ∈ M denote by lx the segment 
onne
ting (f1(x),−2) to (f2(x), 2) then

(1) {x} = lx ∩M for all x ∈ M ,

(2) lx ∩ ly = ∅ for all x, y ∈ M di�erent.

To give a 
ounterexample to Proposition 5.2 without the assumption of stri
t 
onvexity

of ‖ · ‖, 
onsider the map

T (x) := (f2(x), 2)

and observe that, for the norm ‖(x, y, z)‖ := max{|x|, |y|, 3|z|}, the map T is an optimal

transport map for (1.2) betwen µ = Ld⌊M and ν = T♯µ. However, the open transport

set T (supp((id× T )♯µ)) has density 0 at every point of M .

A signi�
ant quantity related to the transport set is the so 
alled transport density,

i.e. a positive measure σ whi
h solves together with any transport potential the system

of PDEs

{

−div(σDu) = µ− ν

‖Du‖∗ = 1 σ − a.e..
(7.1)

The relationship between the transport density and the Monge-Kantorovi
h problem is

given by the following formula �rst dis
overed in [9℄. Let γ be an optimal transport plan,

and for ea
h Borel set B ⊂ Ω 
onsider

σγ(B) :=

∫

Ω×Ω
H1(B ∩ [x, y]))dγ(x, y),

then σγ is a solution of (7.1) above. Clearly σγ is supported on the transport set

T (supp(γ)). In pra
ti
al terms the measure σγ(D) of a set D represents the work done

in the set D while transporting µ to ν following the plan γ. A detailed dis
ussion of the

properties of su
h measures is beyond the s
ope of this paper. The transport density

plays a 
ru
ial role in the proof of existen
e given in [18℄ and good estimates from above

are available for σγ [1, 14, 13, 15℄. Proving some estimate from below for σγ 
ould be

interesting for the approa
h of this paper. In fa
t, assume for example that σγ has an

L∞
density aγ (see for example [14, 18℄) and that at a point x one has 0 < aγ(x). Then

the lower density of the transport set T (γ) at x satis�es θ∗(T (supp(γ)), x) > 0 be
ause

aγ(x) = lim
r→0

1

ωdrd

∫

B(x,r)
aγ(y)dy ≤ lim inf

r→0
‖aγ‖∞

|T (supp(γ)) ∩B(x, r)|

ωdrd
.

Be
ause of the above example, we however 
an not expe
t an estimate from below on σγ
for any solution γ of (1.3), but this may hold for example for an element of O2(µ, ν).
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