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THE MONGE PROBLEM FOR STRICTLY CONVEX NORMS IN R
d

THIERRY CHAMPION AND LUIGI DE PASCALE

Abstrat. We prove the existene of an optimal transport map for the Monge prob-

lem in a onvex bounded subset of R
d
under the assumptions that the �rst marginal

is absolutely ontinuous with respet to the Lebesgue measure and that the ost is

given by a stritly onvex norm. We propose a new approah whih does not use

disintegration of measures.

1. Introdution

The Monge problem has origin in the Mémoire sur la théorie des déblais et remblais

written by G. Monge [22℄, and may be stated as follows:

inf

{
∫

Ω
|x− T (x)|dµ(x) : T ∈ T (µ, ν)

}

, (1.1)

where Ω is the losure of a onvex open subset of R
d
, |·| denotes the usual Eulidean norm

of R
d
, µ, ν are Borel probabilities on Ω and T (µ, ν) denotes the set of transport maps

from µ to ν, i.e. the lass of Borel maps T suh that T♯µ = ν (i.e. T♯µ(B) := µ(T−1(B))
for eah Borel set B).

The main result of this paper is to prove the following existene result for a general-

ization of this problem:

Theorem 1.1. Let ‖ · ‖ be a stritly onvex norm on R
d
and assume that µ is absolutely

ontinuous with respet to the Lebesgue measure Ld
, then the problem

min

{
∫

Ω
‖x− T (x)‖dµ(x) : T ∈ T (µ, ν)

}

(1.2)

has at least one solution.

Before desribing the previous results that we know on this problem and our ontri-

bution on the subjet, we make a brief introdution on the Kantorovih relaxation for

(1.2). For general probability measures the set of transport maps T (µ, ν) may be empty,

for example if µ = δ0 and ν = 1
2(δ1 + δ−1). But even when T (µ, ν) is non-empty it

may happen that problem (1.1) does not admit a minimizer in T (µ, ν): for example take

µ := H1
⌊{0}×[0,1] and ν := 1

2(H
1
⌊{−1}×[0,1] + H1

⌊{1}×[0,1]). Moreover, the objetive fun-

tional of problem (1.2) is non-linear in T and the set T (µ, ν) does not possess the right

ompatness properties to deal with the diret methods of the Calulus of Variations. A

suitable relaxation was introdued by Kantorovih [20, 21℄ and it proved to be a strong,
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deisive tool to deal with this problem. This relaxation is de�ned as follows. The set of

transport plans from µ to ν is de�ned as

Π(µ, ν) := {γ ∈ P(Ω× Ω) | π1
♯ γ = µ, π2

♯ γ = ν},

where πi
denotes the standard projetion in the Cartesian produt. The set Π(µ, ν) is

always non-empty as it ontains at least µ⊗ν. Then Kantorovih proposed to study the

problem

min

{
∫

Ω×Ω
‖x− y‖dγ(x, y) : γ ∈ Π(µ, ν)

}

. (1.3)

Problem (1.3) is onvex and linear in γ then the existene of a minimizer may be obtained

by the diret method of the Calulus of Variations. At this point, to obtain the existene

of a minimizer for (1.2) it is su�ient to prove that some solution γ ∈ Π(µ, ν) of (1.3) is
in fat indued by a transport T ∈ T (µ, ν), i.e. may be written as γ = (id× T )♯µ.

In [29℄, Sudakov devised an e�ient strategy to solve (1.2) for a general norm ‖ · ‖
on R

d
. However this strategy involved a ruial step on the disintegration of an optimal

measure γ for (1.3) whih was not ompleted orretly at that time. In more reent years

the problem (1.1) has been solved �rst by Evans et al. [18℄ with additional regularity

assumptions on µ and ν, and then by Ambrosio [1℄ and Trudinger et al. [30℄ for µ and

ν with integrable density. For C2
uniformly onvex norms the problem (1.2) has been

solved by Ca�arelli et al. [11℄ and Ambrosio et al. [3℄, and �nally for rystalline norms

in R
d
and general norms in R

2
by Ambrosio et al. [2℄. The original proof of Sudakov was

based on the redution of the transport problems to a�ne regions of smaller dimension,

and all the proof we listed above are based on the redution of the problem to a 1-

dimensional problem via a hange of variable or area-formula.

In this paper, we prove the existene of a solution to (1.2) for a general stritly onvex

norm ‖ · ‖ on R
d
, without any regularity assumption on the norm ‖ · ‖. The originality of

our method for the proof of Theorem 1.1 above is that it does not require disintegration

of measures and relies on a simple but powerful regularity result (see Lemma 4.3 below)

whih has been used in some transport problem with ost funtional in non-integral form

[12℄. In setion �2 we reall some well known results on duality and optimality onditions

for problem (1.3). In setion �3, we introdue a seondary transport problem in order

to selet solutions (1.3) that have a partiular regularity property. Setion �4 is devoted

to the notion of regular points of a transport γ and in partiular to Lemma 4.3, whih

states that a transport map γ ∈ Π(µ, ν) is onentrated on a set of regular points. In

the following setion �5, we take advantage of this fat to prove a regularity result on

the transport set assoiated to a solution of (1.3). The proof of our main result Theorem

1.1 is �nally derived in �6, while a possible extension to the ase of a general norm ‖ · ‖
is disussed in �7.

2. Preliminary on optimal transportation: duality and neessary

onditions

The ontent of this setion is lassial (for example see [1, 31℄). Problem (1.3) is onvex

and linear, then lassial onvex duality brings useful information on its minimizers. In
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partiular, the following duality theorem holds (for example we refer to Theorems 3.1.

and 3.3 in [3℄).

Theorem 2.1. The minimum in problem (1.3) is equal to

max

{
∫

Ω
v(x)dµ(x)−

∫

Ω
v(y)dν(y) : v ∈ Lip1(Ω, ‖ · ‖)

}

(2.1)

where Lip1(Ω, ‖ · ‖) is the set of funtions v : Ω → R whih are 1-Lipshitz with respet

to the norm ‖ · ‖, i.e.

∀x, y ∈ Ω, |v(x)− v(y)| ≤ ‖x− y‖.

Moreover if u ∈ Lip1(Ω, ‖ · ‖) is a maximizer for problem (2.1) then γ ∈ Π(µ, ν) is a

minimizer of problem (1.3) if and only if

∀(x, y) ∈ supp γ, u(x)− u(y) = ‖x− y‖.

In the following, maximizers of (2.1) are referred to as Kantorovih transport potentials

for (2.1). If we follow the interpretation of γ as a plan of transport we may dedue from

this last theorem that in order to realize an optimal transport the mass should follow

the diretion of maximal slope of a Kantorovih transport potential u. We give a more

preise statement of this lassial fat in Lemma 2.2 below, and give a short proof to

underline the role of the strit onvexity of the norm.

Lemma 2.2. Assume that ‖ · ‖ is a stritly onvex norm. Let γ be an optimal transport

plan for (1.3), let u ∈ Lip1(Ω, ‖ · ‖) be a Kantorovith potential for (2.1) and let (x, y)
belong to supp(γ) with x 6= y. If u is di�erentiable at x and z ∈ Ω is suh that u(x) =
u(z) + ‖z − x‖ and z 6= x then

z − x

‖z − x‖
=

y − x

‖y − x‖
.

Remark 2.3. In partiular x, y and z are on the same line and z ∈ [x, y] or y ∈ [x, z].

Proof. Without loss of generality we may assume that x = 0. Sine u ∈ Lip1(Ω, ‖ · ‖),
we infer that

∀t ∈ [0, 1], u(0) = u(tz) + t ‖z‖.

Sine u is di�erentiable at 0, we then get ∇u(0) · z = −‖z‖. On the other hand, for any

z′ 6= 0 one also has ∇u(0) ·z′ ≥ −‖z′‖. As a onsequene, −∇u(0) belongs to the normal

one of the losed onvex set K := {z′ : ‖z′‖ ≤ 1} at

z

‖z‖ .

Sine (x, y) ∈ supp(γ) and u is a Kantorovith potential, −∇u(0) also belongs to

the normal one of K at

y

‖y‖ . Sine K is stritly onvex and has nonempty interior,

the intersetion of the normal ones to two of its boundary points is empty unless they

oinide, so that we get

z

‖z‖ = y

‖y‖ . �

Another ruial property of optimal transport plans is the ylial monotoniity rel-

ative to the ost under onsideration: we shall state this in a more general setting to

handle the seondary transport problem of the next setion.
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De�nition 2.4. Let c : Ω2 → [0,+∞]. A transport plan γ ∈ Π(µ, ν) is ylially

monotone for the ost c (or c-ylially) monotone if it is onentrated on a set C suh

that

n
∑

i=1

c(xi, yi) ≤
n
∑

i=1

c(xi, yσ(i))

for all n ≥ 2, (x1, y1), . . . , (xn, yn) ∈ C and any permutation σ of {1, . . . , n}.

The following proposition gives a neessary ondition for optimality in terms of ylial

monotoniity; for a proof, we refer to Theorem 3.2 in [3℄.

Theorem 2.5. Let c : Ω2 → [0,+∞] be a lower semiontinuous ost funtion, and

assume that the in�mum of the orresponding transport problem is �nite:

inf

{
∫

Ω×Ω
c(x, y)dλ : λ ∈ Π(µ, ν)

}

< +∞

If γ is an optimal transport plan for this problem, then there exists a c-ylially monotone

Borel set C on whih c is �nite and γ is onentrated.

Remark 2.6. Duality and su�ieny of ylial monotoniity may be pursued in very

general settings [24, 3, 28, 23, 7℄, however for the purpose of this paper duality may be

obtained more easily and we refer the reader to [1, 31℄.

3. Seondary transport problem to selet monotone transport plans

Following the line of [2℄, we introdue a seondary transport problem to selet optimal

transport plans for (1.3) whih have some more regularity: in the next setions, we shall

prove that these partiular optimal transport plans are indued by transport maps. The

idea that a seondary variational problem may help to hoose �more regular� or partiular

minimizers is the root of the idea of asymptoti development by Γ-onvergene (see [4℄

and [5℄) .

We denote by O1(µ, ν) the set of optimal transport plans for (1.3), and �x a Kan-

torovih transport potential u, i.e. a maximizer of (2.1). Let us de�ne the new ost

funtion

β(x, y) :=

{

|x− y|2 if u(x) = u(y) + ‖x− y‖,
+∞ otherwise.

(3.1)

We then onsider the following transport problem:

min

{
∫

Ω×Ω
β(x, y)dλ(x, y) : λ ∈ Π(µ, ν)

}

. (3.2)

Beause of the haraterization of the minimizers for (1.3) given in Theorem 2.1, it

appears that the above problem may be rewritten as

min

{
∫

Ω×Ω
β(x, y)dλ(x, y) : λ ∈ O1(µ, ν)

}

.

In other words, the problem (3.2) onsists in minimizing the new ost funtional λ 7→
∫

βdλ among the minimizers of problem (1.3), and in this sense it may be onsidered as

a seondary variational problem.
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De�nition 3.1. We shall denote by O2(µ, ν) the minimizers for (3.2).

By Theorem 2.5, the set O2(µ, ν) is non-empty and any of its elements enjoy the

additional property of being onentrated on a set whih is also β-ylially monotone.

This implies the following monotoniity, whose proof is derived from that of Lemma 4.1

in [2℄.

Proposition 3.2. Let γ be a minimizer of problem (3.2). Then γ is onentrated on a

σ-�nite set Γ with the following property:

∀(x, y), (x′, y′) ∈ Γ, x ∈ [x′, y′] ⇒ (x− x′) · (y − y′) ≥ 0 (3.3)

where · denotes the usual salar produt on R
d
.

Proof. Applying Theorem 2.5, we get that γ is onentrated on a β-ylially monotone

Borel set Γ on whih β is �nite. Up to removing a γ-negligible set from Γ, we may

assume that Γ is σ-�nite.

Let (x, y), (x′, y′) ∈ Γ be suh that x ∈ [x′, y′]. Sine γ is optimal for (1.3) and u is a

Kantorovih potential for (2.1) we dedue that

u(x) = u(y) + ‖x− y‖ and u(x′) = u(y′) + ‖x′ − y′‖.

Sine x ∈ [x′, y′] we also have ‖x′ − y′‖ = ‖x − x′‖ + ‖x − y′‖, and then using the fat

that u ∈ Lip1(Ω, ‖ · ‖) we have

u(x′) = u(y′) + ‖x− x′‖+ ‖x− y′‖ ≥ u(x) + ‖x− x′‖

and then again sine u ∈ Lip1(Ω, ‖ · ‖) we infer that the above inequality is an equality,

so that

u(x) = u(y′) + ‖x− y′‖ and u(x′) = u(x) + ‖x− x′‖.

But then we also have u(x′) = u(y)+ ‖x− y‖+ ‖x−x′‖ so that u(x′) = u(y)+ ‖y−x′‖.
It then follows that β(x′, y) = |x − y|2 and β(x, y′) = |x − y′|2. Sine Γ is β-ylially

monotone, we onlude

|x− y|2 + |x′ − y′|2 ≤ |x− y′|2 + |x′ − y|2

whih is equivalent to (x− x′) · (y − y′) ≥ 0. �

Remark 3.3. The reason to deal with σ-ompat sets Γ, in the above proposition as well

as in the following, is that the projetion π1(Γ) is also σ-ompat, and in partiular is a

Borel set.

4. A property of transport plans

We begin by onsidering some general properties of transport plans. This setion is

independent of the transport problem (1.3), and the de�nitions and tehniques detailed

below are re�nements of similar ones whih were �rst applied in [12℄ in the framework

of non-lassial transportation problems involving ost funtionals not in integral form.

De�nition 4.1. Let γ ∈ Π(µ, ν) be a transport plan and Γ a σ-ompat set on whih it

is onentrated. For y ∈ Ω and r > 0 we de�ne

Γ−1(B(y, r)) := π1(Γ ∩ (Ω×B(y, r))).
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In other words, Γ−1(B(y, r)) is the set of points whose mass is partially or ompletely

transported to B(y, r) by the restrition of γ to Γ. We may justify this slight abuse

of notations by the fat that γ should be thought of as a devie that transports mass.

Notie also that Γ−1(B(y, r)) is a σ-ompat set.

Sine this notion is important in the sequel, we reall that when A is Ld
-measurable,

one has

lim
r→0

Ld(A ∩B(x, r))

Ld(B(x, r))
= 1

for almost every x in A: we shall all suh a point x a Lebesgue point of A, this

terminology deriving from the fat that suh a point may also be onsidered as a Lebesgue

point of χA. In the following, we shall denote by Leb(A) the set of points x ∈ A whih

are Lebesgue points of A.

Remark 4.2. In the de�nition of Lebesgue points, one may replae the open ball B(x, r)
by the set x+ rC, where C is a onvex neighborhood of 0.

The following Lemma, although quite simple, is an important step in the proof of

Proposition 5.2 and Theorem 6.1 below. Its proof is a straightforward adaptation of

that of Lemma 5.2 from [12℄ and we detail it for the onveniene of the reader.

Lemma 4.3. Let γ ∈ Π(µ, ν) and Γ a σ-ompat set on whih it is onentrated. If we

assume that µ << Ld
, then γ is onentrated on a σ-ompat set R(Γ) suh that for all

(x, y) ∈ R(Γ) the point x is a Lebesgue point of Γ−1(B(y, r)) for all r > 0.

Proof. Let

A := {(x, y) ∈ Γ : x /∈ Leb(Γ−1(B(y, r))) for some r > 0};

we �rst intend to show that γ(A) = 0. To this end, for eah positive integer n we

onsider a �nite overing Ω ⊂
⋃

i∈I(n)

B(yni , rn) by balls of radius rn := 1
2n . We notie that

if (x, y) ∈ Γ and x is not a Lebesgue point of Γ−1(B(y, r)) for some r > 0, then for any

n ≥ 1
r
and yni suh that |yni − y| < rn the point x belongs to Γ−1(B(yni , rn)) but is not

a Lebesgue point of this set. Then

π1(A) ⊂
⋃

n≥1

⋃

i∈I(n)

(

Γ−1(B(yni , rn)) \ Leb(Γ
−1(B(yni , rn)))

)

.

Notie that the set on the right hand side has Lebesgue measure 0, and thus µ-measure

0. It follows that γ(A) ≤ γ(π1(A)× Ω) = µ(π1(A)) = 0.
Finally, sine Ld(π1(A)) = 0, there exists a sequene (Uk)k≥0 of open sets suh that

∀k ≥ 0, π1(A) ⊂ Uk and lim
k→∞

Ld(Uk) = 0.

Then the set R(Γ) := Γ
⋂

(
⋃

k≥0

(Ω \ Uk)× Ω) has the desired properties. �

The above Lemma yields us to introdue the following notion:
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De�nition 4.4. The ouple (x, y) ∈ Γ is a Γ-regular point if x is a Lebesgue point of

Γ−1(B(y, r)) for any positive r.

Notie that any element of the set R(Γ) of Lemma 4.3 is a Γ-regular point. Lemma 4.3

above therefore states that any transport plan Γ is onentrated on a Borel set onsisting

of regular points: this regularity property turns out to be a powerful tool in the study

of the support of optimal transport plans for problem (1.3), as the proof of Proposition

5.2 below illustrates.

5. A property of optimal transport plans

In this setion, we obtain a regularity result on the transport plans that are optimal for

problem (1.3). Following the formalism of [3℄, we �rst introdue the notions of transport

set related to a subset Γ of R
d × R

d
.

De�nition 5.1. Let Γ be a subset of R
d × R

d
, the transport set T (Γ) of Γ is

{(1− t)x+ ty | (x, y) ∈ Γ, t ∈ (0, 1)}.

Notie that if Γ is σ-ompat then T (Γ) is also σ-ompat.

The following Proposition 5.2 gives a regularity property for optimal transport plans

for (1.3) in the ase where ‖ · ‖ is a stritly onvex norm. This property is obtained

using two priniple ingredients. The �rst is the fat that an optimal transport plan is

onentrated on a set of regular points (see Lemma 4.3). The seond ingredient relies on

the property of the Kantorovih potentials stated in Lemma 2.2 whih allow to derive a

density estimate on the transport rays. This estimate is lose to that stated in Lemma

5.4 of [6℄ (see also [8℄) for the transport potential of the variational problem studied

therein.

Let us introdue some notations: let x, y ∈ R
d
with x 6= y, we then denote by Pxy

the orthogonal projetion on the line xy passing through x and y with respet to the

Eulidean norm. For ∆, t1, t2 ∈ R with ∆ > 0 and t1 < t2 we then de�ne the following

portion of ylinder with axis xy:

Q(x, y, t1, t2,∆) :=

{

z ∈ R
d : (Pxy(z)− x) ·

(y − x)

|y − x|
∈ [t1, t2] and |z − Pxy(z)| ≤ ∆

}

.

We an now state the following regularity result.

Proposition 5.2. Assume that ‖ · ‖ is a stritly onvex norm and µ << Ld
. Let also

γ ∈ Π(µ, ν) be an optimal transport plan for problem (1.3) and Γ a σ-ompat set on

whih γ is onentrated. Then γ is onentrated on a σ-ompat subset RT (Γ) of R(Γ)
suh that for any (x, y) ∈ RT (Γ) with x 6= y and for r > 0 small enough it holds

lim inf
δ→0+

Ld
(

T
(

Γ ∩ Q−δ,r(x, y)×B(y, r)
)

∩Q+δ,r(x, y)
)

Ld(Q+δ,r(x, y))
> 0 (5.1)

where for any δ > 0 we set

Q−δ,r(x, y) := Q(x, y,−δ,−
δ

2
, rδ) and Q+δ,r(x, y) := Q (x, y, 0, δ, rδ∆r) .

with ∆r := 1 + 2
|y−x| .
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rδ∆r rδ

δ
2

δ

Q−δ,r(x̃, ỹ)

Q+δ,r(x̃, ỹ)

r

ỹ
x̃

Figure 1

Proof. Step 1: de�nition of RT (Γ). Let u ∈ Lip1(Ω, ‖ · ‖) be a Kantorovih potential for

problem (1.3), and denote by Di�(u) the set of points of di�erentiability of u. Sine u is

Lipshitz ontinuous in Ω, Di�(u) has full Lebesgue measure in Ω, so that there exists a

sequene (Uk)k≥0 of open subsets of Ω suh that

∀k ≥ 0, (Ω \ Uk) ⊂ Di�(u) and lim
k→∞

Ld(Uk) = 0.

We set

A := R(Γ) ∩
⋃

k≥0

(Ω \ Uk)× Ω.

and notie that A is a σ-ompat set whih has full measure for γ. In partiular, π1(A)
is also σ-ompat and it has full measure for µ. Sine Ld(π1(A)\Leb(π1(A))) = 0, there
exists a sequene (Vk)k≥0 of open subsets of Ω suh that

∀k ≥ 0, (π1(A) \ Leb(π1(A))) ⊂ Vk and lim
k→∞

Ld(Vk) = 0.

We may now de�ne

RT (Γ) := A ∩
⋃

k≥0

(Ω \ Vk)× Ω.

Then RT (Γ) is a σ-ompat set whih is inluded in R(Γ) and has full measure for γ.

Moreover, notie that if (x, y) ∈ RT (Γ) then x ∈ Di�(u) and x is a Lebesgue point of

π1(RT (Γ)).
We shall prove that the set RT (Γ) has the desired property.

Step 2: redution of the proof. In the following, (x̃, ỹ) is an element of RT (Γ) with
x̃ 6= ỹ, and we aim to show that for r > 0 small enough it holds

lim inf
δ→0+

Ld
(

T
(

Γ ∩ Q−δ,r(x̃, ỹ)×B(ỹ, r)
)

∩Q+δ,r(x̃, ỹ)
)

Ld(Q+δ,r(x̃, ỹ))
> 0 (5.2)

Without loss of generality we may assume that x̃ = 0 and

ỹ−x̃
|ỹ−x̃| =

ỹ
|ỹ| = e1 is the �rst

vetor of the anonial Eulidean basis of R
d
. If for s > 0 we denote by Bd−1(0, s) the
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losed ball of R
d−1

of enter 0 and radius s, we an rewrite

Q−δ,r(x̃, ỹ) = [−δ,−
δ

2
]×Bd−1(0, rδ) and Q+δ,r(x̃, ỹ) = [0, δ]×Bd−1(0, rδ∆r).

Fix r > 0 and s > 0 small enough so that

η := inf{|y − x| : x ∈ [−s, s]×Bd−1(0, rs∆r), y ∈ B(ỹ, r)} > 0. (5.3)

Sine (0, ỹ) ∈ Γ, 0 is a Lebesgue point of Γ−1(B(ỹ, r)). Sine 0 is also a Lebesgue

point of π1(RT (Γ)), we infer that it is a Lebesgue point of the σ-ompat set R :=

Γ−1(B(ỹ, r)) ∩ π1(RT (Γ)). It then follows from the Fubini theorem, the de�nition of

Lebesgue points and remark 4.2 that for δ ∈ ]0, s[ small enough one has

L1

({

t ∈ [−δ, δ] : Hd−1(R∩ {t} ×Bd−1(0, rδ)) ≥
1

2
(rδ)d−1ωd−1

})

≥
8

5
δ

where ωd−1 = Ld−1(Bd−1(0, 1)). We �x suh a small enough δ ∈ ]0, s[ , and hoose

tδ ∈ [−δ,− δ
2 ] suh that

Hd−1(R∩ {tδ} ×Bd−1(0, rδ)) ≥
1

2
(rδ)d−1ωd−1.

We �nally take a ompat subset Rδ of R ∩ {tδ} × Bd−1(0, rδ) suh that Hd−1(Rδ) ≥
1
4(rδ)

d−1ωd−1 and we shall now obtain a lower bound for

Ld
(

T (Γ ∩Rδ ×B(ỹ, r)) ∩Q+δ,r(0, ỹ)
)

.

Step 3: an approximation for T (Γ ∩ Rδ × B(ỹ, r)) on Q+δ,r(0, ỹ). Let {yk}k≥0 be a

dense sequene in B(ỹ, r), then for x ∈ Ω and N ≥ 0 we set

MN (x) :=

{

k ∈ {0, . . . , N} : u(yk) + ‖x− yk‖ = min
0≤j≤N

{u(yj) + ‖x− yj‖}

}

.

We now onsider

Cδ,N :=
N
⋃

k=0

{(x, yk) : x ∈ Rδ and k ∈ MN (x)}.

Notie that Cδ,N is a ompat set and that π1(Cδ,N ) = Rδ. We �nally set

L := Q+δ,r(0, ỹ) ∩
⋂

K≥0

⋃

N≥K

T (Cδ,N )

and we laim that L ⊂ T (Γ ∩ Rδ × B(ỹ, r)) ∩Q+δ,r(0, ỹ). Indeed let x ∈ L, then there

exists x′ ∈ Rδ and z′ ∈ B(ỹ, r) suh that x ∈ [x′, z′] and

u(z′) + ‖x′ − z′‖ = inf
k≥0

{u(yk) + ‖x′ − yk‖} = min
y∈B(ỹ,r)

{u(y) + ‖x′ − y‖}.

Sine x′ ∈ Rδ ⊂ Γ−1(B(ỹ, r)), we infer that there exists y′ ∈ B(ỹ, r) suh that (x′, y′) ∈
Γ. As a onsequene, one has

u(x′) = u(y′) + ‖x′ − y′‖ = min
y∈B(ỹ,r)

{u(y) + ‖x′ − y‖}.
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We thus obtain that u(x′) = u(z′) + ‖x′ − z′‖ and we onlude from Rδ ⊂ Di�(u) and
Lemma 2.2 that either z′ ∈ [x′, y′] or y′ ∈ [x′, z′]. Therefore z′ belongs to the line

passing through x′ and y′, and then by (5.3) we get that x belongs to [x′, y′] and thus

to T (Γ ∩Rδ ×B(ỹ, r)) ∩Q+δ,r(0, ỹ).

Step 4: a lower bound on Ld(T (Cδ,N ) ∩ Q+δ,r(0, ỹ)). Fix N ≥ 0, and de�ne k ∈
{0, . . . , N} the Borel set

Dk := {x ∈ Rδ : k = min{j : j ∈ MN (x)}} .

For any k ∈ {0, . . . , N} the one T (Dk × {yk}) with basis Dk and vertex yk is inluded

in T (Cδ,N ). We laim that these ones do not overlap:

k 6= l ⇒ T (Dk × {yk}) ∩ T (Dl × {yl}) = ∅.

We argue by ontradition and assume that for some k < l, xk ∈ Dk and xl ∈ Dl there

exists z ∈ [xk, yk] ∩ [xl, yl]. Then it follows from the de�nitions of Dk that

u(yk) + ‖xk − yk‖ ≤ u(yl) + ‖xk − yl‖

and from k < l and the de�nition of Dl that

u(yl) + ‖xl − yl‖ < u(yk) + ‖xl − yk‖.

We now ompute

u(yk) + ‖z − yk‖ = u(yk) + ‖xk − yk‖ − ‖xk − z‖

≤ u(yl) + ‖xk − yl‖ − ‖xk − z‖

≤ u(yl) + ‖z − yl‖ = u(yl) + ‖xl − yl‖ − ‖xl − z‖

< u(yk) + ‖xl − yk‖ − ‖xl − z‖ ≤ u(yk) + ‖z − yk‖

whih is a ontradition and proves the laim.

We infer from the hoie of ∆r t(see Figure 1) hat

T (Dk × {yk}) ∩ [0, δ]× R
d−1 ⊂ Q+δ,r(0, ỹ)

and then we get from (5.3) the following estimate:

∀k ∈ {0, . . . , N}, Ld(T (Dk × {yk}) ∩Q+δ,r(0, ỹ))) ≥ δ
η

η + 2s
Hd−1(Dk).

Sine the ones T (Dk × {yk}) do not overlap, we obtain from the preeding that

Ld(T (Cδ,N ) ∩Q+δ,r(0, ỹ)) ≥ δ
η

η + 2s

N
∑

k=0

Hd−1(Dk) = δ
η

η + 2s
Hd−1(Rδ)

and thus

Ld(T (Cδ,N ) ∩Q+δ,r(0, ỹ)) ≥
η

4(η + 2s)
rd−1 δd ωd−1. (5.4)

Step 5. We now onlude the proof by notiing that

L =
⋂

K≥0

⋃

N≥K

T (Cδ,N ) ∩Q+δ,r(0, ỹ)

so that

Ld(L) ≥
η

4(η + 2s)

1

∆d−1
r

Ld(Q+δ,r(0, ỹ)).
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We then infer from L ⊂ T (Γ ∩Rδ ×B(ỹ, r)) ∩Q+δ,r(0, ỹ) that (5.2) holds. �

Remark 5.3. In the above proof, we only use the strit onvexity of the norm ‖ · ‖ to

apply Lemma 2.2.

6. Proof of the main theorem

Now we are in position to prove Theorem 1.1 whih is, in fat, a orollary of the

following more preise result.

Theorem 6.1. Assume that the norm ‖ · ‖ is stritly onvex and µ << Ld
. Then for

every γ ∈ Π(µ, ν) ∩ O2(µ, ν) there exists a map Tγ ∈ T (µ, ν) suh that γ = (id× Tγ)♯µ.
Moreover, the solution γ ∈ Π(µ, ν) ∩ O2(µ, ν) is unique.

Proof. By Proposition 2.1 in [1℄, it is su�ient to prove that γ is onentrated on a Borel

graph.

It follows from Proposition 3.2 that γ is onentrated on a σ-ompat set Γ satisfying

(3.3). We then apply Proposition 5.2 to get that γ is onentrated on a σ-ompat subset

RT (Γ) of R(Γ) satisfying (5.1).

We laim that RT (Γ) is a ontained in a graph. To prove this, we show that if (x0, y0)
and (x0, y1) both belong to RT (Γ) then y0 = y1. We argue by ontradition, and then

we assume that y1 6= y0. As a onsequene, one either has (y1 − y0) · (y0 − x0) < 0 or

(y0 − y1) · (y1 − x0) < 0. Without loss of generality, we assume that

(y1 − y0) · (y0 − x0) < 0.

We �x r > 0 small enough so that

∀x ∈ Q+r,r(x0, y0), ∀y
′ ∈ B(y0, r), ∀y ∈ B(y1, r), (y − y′) · (y′ − x) < 0. (6.1)

Sine (x0, y1) ∈ RT (Γ), we infer that x0 is a Lebesgue point for Γ
−1(B(y1, r)). Moreover,

we also get from (x0, y0) ∈ RT (Γ) and (5.1) that

lim inf
δ→0+

Ld
(

T
(

Γ ∩ Q−δ,r(x0, y0)×B(y0, r)
)

∩Q+δ,r(x0, y0)
)

Ld(Q+δ,r(x0, y0))
> 0

As a onsequene, for δ ∈ ]0, r[ small enough there exists (x′, y′) and (x, y) in Γ suh

that

x′ ∈ Q−δ,r(x0, y0), y′ ∈ B(y0, r), x ∈ [x′, y′] ∩Q+δ,r(x0, y0) and y ∈ B(y1, r).

It follows from (3.3) applied to (x′, y′) and (x, y) that

(y − y′) · (x− x′) ≥ 0

but sine x ∈ [x′, y′] one also has x− x′ = |x−x′|
|y′−x| (y

′ − x) and we get a ontradition with

(6.1).

The uniqueness of γ ∈ Π(µ, ν) ∩ O2(µ, ν) is obtained as in Step 5 of the proof of

Theorem B in [2℄: if γ1 and γ2 are two suh transport plans, then

γ1+γ2
2 also belongs

to Π(µ, ν) ∩ O2(µ, ν). It follows from the preeding that these plans are all indued by

transport maps, whih then oinide µ almost everywhere.

�
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7. Norms whih are not stritly onvex and further remarks

It is remarkable in the preedind proofs that the strit onvexity assumption on the

norm ‖ · ‖ is only used through Lemma 2.2: as explained in the introdution of [2℄,

the diretion of transportation is totally detemined at any point of di�erentiability of a

Kantorovih potential u when the the norm ‖ · ‖ is stritly onvex, and this information

is su�ient to onlude in the proof of 5.2. Without this assumption, the optimality of

the transport plan γ is not enough to obtain the density property of Proposition 5.2.

This is shown by the following example onstruted in [2℄:

Theorem 7.1 (Theorem A of [2℄). There exist a Borel set M ⊂ [−1, 1]3 with |M | = 8
and two Borel maps fi : M → [−2, 2]× [−2, 2] for i = 1, 2 suh that the following holds.

For x ∈ M denote by lx the segment onneting (f1(x),−2) to (f2(x), 2) then

(1) {x} = lx ∩M for all x ∈ M ,

(2) lx ∩ ly = ∅ for all x, y ∈ M di�erent.

To give a ounterexample to Proposition 5.2 without the assumption of strit onvexity

of ‖ · ‖, onsider the map

T (x) := (f2(x), 2)

and observe that, for the norm ‖(x, y, z)‖ := max{|x|, |y|, 3|z|}, the map T is an optimal

transport map for (1.2) betwen µ = Ld⌊M and ν = T♯µ. However, the open transport

set T (supp((id× T )♯µ)) has density 0 at every point of M .

A signi�ant quantity related to the transport set is the so alled transport density,

i.e. a positive measure σ whih solves together with any transport potential the system

of PDEs

{

−div(σDu) = µ− ν

‖Du‖∗ = 1 σ − a.e..
(7.1)

The relationship between the transport density and the Monge-Kantorovih problem is

given by the following formula �rst disovered in [9℄. Let γ be an optimal transport plan,

and for eah Borel set B ⊂ Ω onsider

σγ(B) :=

∫

Ω×Ω
H1(B ∩ [x, y]))dγ(x, y),

then σγ is a solution of (7.1) above. Clearly σγ is supported on the transport set

T (supp(γ)). In pratial terms the measure σγ(D) of a set D represents the work done

in the set D while transporting µ to ν following the plan γ. A detailed disussion of the

properties of suh measures is beyond the sope of this paper. The transport density

plays a ruial role in the proof of existene given in [18℄ and good estimates from above

are available for σγ [1, 14, 13, 15℄. Proving some estimate from below for σγ ould be

interesting for the approah of this paper. In fat, assume for example that σγ has an

L∞
density aγ (see for example [14, 18℄) and that at a point x one has 0 < aγ(x). Then

the lower density of the transport set T (γ) at x satis�es θ∗(T (supp(γ)), x) > 0 beause

aγ(x) = lim
r→0

1

ωdrd

∫

B(x,r)
aγ(y)dy ≤ lim inf

r→0
‖aγ‖∞

|T (supp(γ)) ∩B(x, r)|

ωdrd
.

Beause of the above example, we however an not expet an estimate from below on σγ
for any solution γ of (1.3), but this may hold for example for an element of O2(µ, ν).



OPTIMAL TRANSPORT MAP 13

Aknowledgments

Referenes

[1℄ Ambrosio, L., Leture Notes on Optimal Transportation Problems, Mathematial aspets of evolv-

ing interfaes (Funhal, 2000), Leture Notes in Math., 1812, Springer, Berlin, 2003, 1�52.

[2℄ Ambrosio, L., Kirhheim, B., Pratelli, A., Existene of optimal transport maps for rystalline

norms, Duke Math. J., 125 (2004), no. 2, 207�241.

[3℄ Ambrosio, L., Pratelli, A.,, Existene and stability results in the L
1
theory of optimal trans-

portation, Optimal transportation and appliations (Martina Frana, 2001), Leture Notes in Math.,

1813, Springer, Berlin, 2003, 123�160.

[4℄ Anzellotti, G., Baldo, S., Asymptoti development by Γ-onvergene, Appl. Math. Optim. 27

(1993), no. 2, 105�123.

[5℄ Attouh, H., Visosity solutions of minimization problems, SIAM J. Optim. 6 (1996), no. 3,

769�806.

[6℄ Bianhini, S., On the Euler-Lagrange equation for a variational problem, Disrete Contin. Dyn.

Syst., 17 (2007), no. 3, 449�480.

[7℄ Bianhini, S., Caravenna, L. Talk given by L.Caravenna in Pisa, november 2007. See also

Bibliographial Notes to hapter 5 of [32℄

[8℄ Bianhini, S., Gloyer, M. On the Euler-Lagrange equation for a variational problem: The general

ase II, Preprint SISSA (2008) available at http://digitallibrary.sissa.it/index.jsp

[9℄ Bouhitté, G., Buttazzo, G. Charaterization of optimal shapes and masses through Monge�

Kantorovih equation, Journal European Math. So., 3 (2001), 139�168.

[10℄ Benamou, J. D., Brenier, Y., A omputational �uid mehanis solution to the Monge�

Kantorovih mass transfer problem, Numer. Math., 84 (2000), 375�393.

[11℄ Caffarelli, L.A., Feldman, M., MCann, R.J., Construting optimal maps for Monge's trans-

port problem as a limit of stritly onvex osts, J. Amer. Math. So. 15 (2002), no. 1, 1�26.

[12℄ Champion, T. De Pasale, L., Juutinen, P. The ∞-Wasserstein distane: loal solutions and

existene of optimal transport maps, SIAM J. of Mathematial Analysis 40 (2008), no. 1, 1-20.

[13℄ De Pasale,L., Evans, L.C., Pratelli, A., Integral Estimates for Transport Densities, Bulletin

of the London Mathematial Soiety, 36 (2004), no.3, 383-396.

[14℄ De Pasale, L., Pratelli, A., Regularity properties for Monge transport density and for solutions

of some shape optimization problem, Cal. Var. Partial Di�er. Equ., 14 (2002), no. 3, 249�274.

[15℄ De Pasale, L., Pratelli, A. Interpolation and sharp summability for Monge Transport density,

ESAIM Control, Optimization and Calulus of Variations, 10 (2004), no. 4, 549-552.

[16℄ Ekeland, I., Temam, R., Convex Analysis and Variational Problems. North-Holland Publishing

Company-Amsterdam (1976).

[17℄ Evans, L. C., Partial Di�erential Equations and Monge�Kantorovih Mass Transfer, Current

developments in mathematis, 1997 (Cambridge, MA), Int. Press, Boston, MA, (1999), 65�126.

[18℄ Evans, L. C., Gangbo, W., Di�erential Equations Methods for the Monge�Kantorovih Mass

Transfer Problem, Mem. Amer. Math. So., Vol. 137 (1999).

[19℄ Gangbo, W., MCann, R. J., The geometry of optimal transportation, Ata Math., 177 (1996),

113�161.

[20℄ Kantorovih, L.V., On the transloation of masses, C.R. (Dokl.) Aad. Si. URSS, 37 (1942),

199-201.

[21℄ Kantorovih, L.V., On a problem of Monge (in Russian), Uspekhi Mat. Nauk., 3 (1948), 225-226.

[22℄ Monge, G.,Mémoire sur la théorie des Déblais et des Remblais, Histoire de l'Aadémie des Sienes

de Paris, 1781.

[23℄ Pratelli, A., On the su�ieny of -ylial monotoniity for optimality of transport plans, Math.

Z., 258 (2008), no. 3, 677�690

[24℄ Rahev, S., Rüshendorf, L., Mass transportation problems. Vol. I. Theory. Probability and

its Appliations, Springer-Verlag, New York (1998).

[25℄ Rokafellar, R.T., Convex analysis, Prineton University Press, Prineton, N. J. (1970).



14 THIERRY CHAMPION AND LUIGI DE PASCALE

[26℄ Rüshendorf, L., Optimal solutions of multivariate oupling problems, Appl. Math. (Warsaw) 23

(1995), no. 3, 325�338.

[27℄ Rüshendorf, L., On c−optimal random variables, Statisti & Probability letters, 27 (1996),

267�270.

[28℄ Shahermayer, W., and Teihmann, J., Charaterization of optimal Transport Plans for the

Monge-Kantorovih-Problem, Pro. Amer. Math. So., to appear.

[29℄ Sudakov, V. N., Geometri problems in the theory of in�nite-dimensional probability distribu-

tions. Cover to over translation of Trudy Mat. Inst. Steklov 141 (1976). Pro. Steklov Inst. Math.

1979, no. 2, i�v, 1�178.

[30℄ Trudinger, N.S., Wang, X.J., On the Monge mass transfer problem, Cal. Var. Partial Di�er-

ential Equations 13 (2001), no. 1, 19�31.

[31℄ Villani, C., Topis in optimal transportation. Graduate Studies in Mathematis, 58, Amerian

Mathematial Soiety (2003)

[32℄ Villani, C., Optimal Transport, Old and New. Available at http://www.umpa.ens-lyon.fr/ vil-

lani/surveys.html#oldnew

T.C. Institut de Mathématiques de Toulon et du Var, U.F.R. des Sienes et Teh-

niques, Université du Sud Toulon-Var, Avenue de l'Université, BP 20132, 83957 La Garde

edex, FRANCE

L.D.P. Dipartimento di Matematia Appliata, Universitá di Pisa, Via Buonarroti 1/,

56127 Pisa, ITALY


