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1. Introduction

In this paper we study the asymptotic behaviour as the positive parameter ε goes to 0 of the
sequences of solutions of the problems

(Pε) Min

{
Fε(v) +

∫
Ω

β(x)v(x)dx : v ∈ C0(Ω)
}

where C0(Ω) denotes the set of continuous functions on Ω which vanish on ∂Ω and the functionals
Fε are given on C0(Ω) by

Fε(v) :=


∫

Ω

f(
x

ε
,Dv(x))dx if v ∈ W 1,∞(Ω) ∩ C0(Ω),

+∞ elsewhere,

and where Ω is an open bounded subset of RN , β ∈ L1(Ω) and f is a function satisfying:

(1) (x, ξ) 7→ f(x, ξ) ∈ [0,+∞] is measurable in (x, ξ), ]0, 1[N -periodic in x, lower-semicontinuous
and convex in ξ,

(2) f(·, 0) belongs to L1(]0, 1[N ),

(3) there exists R > 0 such that 0 ∈ domf(x, .) ⊂ B(0, R) for a.e. x in Ω.

In the following, we denote C(x) := domf(x, .) the pointwise constraint set: by hypotheses (1)
and (3), C(x) is closed, convex and included in B(0, R) for almost every x in Ω. Notice that
Fε(v) < +∞ implies that Dv(x) ∈ C(x

ε ) almost everywhere, thus the family (Pε) is a family
of problems with convex bounded constraints on the gradient. This kind of problem arises in
various physical models as for the dielectric breakdown, polycrystal plasticity, or torsional creep
problems. We refer to [4], [20], [21] and [22] for a presentation of the applications. Moreover as
explained in [4] this question is also related to the homogenization of variational inequalities.

In 1978, it was conjectured in [4] (p. 207-214) that if for each positive ε the function uε is
a minimizer of the corresponding problem (Pε), then the convergent subsequences of the family
(uε)ε converge (in C0(Ω) endowed with the topology of the uniform convergence) to minimizers
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of the following homogenized problem

(Phom) Min

{
Fhom(v) +

∫
Ω

β(x)v(x)dx : v ∈ C0(Ω)
}

where the homogenized functional Fhom is given on C0(Ω) by

Fhom(v) :=


∫

Ω

fhom(Dv(x))dx if it is �nite and v ∈ W 1,∞(Ω) ∩ C0(Ω),

+∞ elsewhere,

while the convex integrand fhom is de�ned on RN by the following formula:

fhom(ξ) = inf

{∫
]0,1[N

f(y, ξ + Dv(y))dy : v ∈ W 1,∞
# (]0, 1[N ) ∩ C(]0, 1[N )

}
.

In the above formula, W 1,p
] (]0, 1[N ) denotes the set of functions of W 1,p

loc (RN ) which are ]0, 1[N -

periodic. Our setting is slightly more general than the setting of [4] since the constraint sets
C(x) do not need to be a balls or even to be balanced.

Here we give a short and self-contained proof of the previous homogenization formula in the
general case which �ts in the scheme of the proof of theorem 1.49 in [1] (p.106-112, see also [2]).
Our proof of the Γ-convergence of the functionals (Fε)ε to Fhom (see �2 for details) thus splits in
two independent parts: the estimate for the Γ− lim inf is obtained through the regularization of
the functionals Fε while the Γ− lim sup estimate is obtained through a suitable piecewise a�ne
approximation of functions subject to constraints on the gradient. The regularization for the
functionals Fε consists in approximating the integrands of these integral functionals Fε via inf-
convolution with the function |.|N+1. For every ε > 0, this gives a non-decreasing family (Fε,λ)λ

of functionals to which the classical homogenization theory in the Sobolev space W 1,N+1 apply.
The Γ − lim inf estimate then follows easily from the non-decreasing property. On the other
hand, the Γ− lim sup estimate is obtained through a more technical and involved approximation
argument: the main step here is to approximate a given Lipschitz continuous function whose
gradient is subject to bounded convex constraints by a family of continuous and piecewise a�ne
functions whose gradients satisfy the same constraints. This can be done under one of the two
following additional assumptions on f and C:

either a) 0 belongs to the interior of Chom := dom(fhom),
or b) there exists w in W 1,∞(]0, 1[N ) ∩ C0(]0, 1[N ) such that

fhom(0) =
∫

]0,1[N
f(y, Dw(y))dy.

(1.1)

As we shall see, this hypothesis is used to obtain an upper-bound for Γ−lim supFε(u0), where u0

is the function which is identically 0 on Ω (see lemma 4.6). The part b) of hypothesis (1.1) seems
rather technical and in fact reduces to the following statement: the in�mum in the de�nition
of fhom(0) is attained in W 1,∞(]0, 1[N ) ∩ C0(]0, 1[N ). This hypothesis is obviously satis�ed for
example when the following holds

∀x f(x, 0) = min{f(x, ξ) : ξ ∈ RN} (1.2)

in which case w = u0 �ts for b) of hypothesis (1.1). This property is for example satis�ed in
the physical models discussed in [21] where f(x, ξ) = |ξ|2 + δC(x)(ξ). Moreover, the property
(1.2) is always satis�ed when f(x, 0) = 0 and this last condition can be interpreted in continuum
mechanics as a consequence of the fact that the parts of a body which do not undergo any
deformation do not give contribution to the stored energy.
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As this topic is already widely present in the litterature (without being exhaustive, we refer to
[6]−−[13], [15]−−[16], [19], [21]) we think it is important to notice once more that the results proved
in this paper are partly known. Our proof does not make use of more or less involved concept
(e.g. inner regularization of functionals, dependency on the set) needed in the classical proofs.
We also allow as constraints very general convex sets which can degenerate or be very anti-
symetric. We also remark that an approach similar to that of the present paper was proposed in
[1], [3], [19], and was also worked out in the case of Neumann problems in [10]. Our contribution
consists in a technical simpli�cation of the approach and in an extension of the results to more
general domains. In fact the approximating functionals we choose for the Γ-liminf are extremely
natural and do not require special lemmas. For the Γ-limsup we use a step by step reconstruction
of the limit functional on di�erent classes of functions. However the way we do it is considerably
simple thanks to the approximation used in lemma 4.10 and to the classes of functions we
choose. In particular the method of calculus of the Γ-limsup permits to extend the results to
nonconvex domains Ω and to avoid various notions of regularization of set functions as the "inner
regularization" which is commonly used in this topic.

The plan of the paper is the following: in section 2 we introduce some notations, we recall the
de�nition and the main properties of the Γ−convergence and of the inf-convolution of convex
functions. Then we introduce the regularized functionals Fε,λ and recall the standard homog-
enization theory which can be applied to these functionals. The main results are stated and
commented in section 3 while the proof of the Γ-convergence result is given in section 4.

2. Notations and preliminary results

2.1. Γ-convergence. We now recall the notion of Γ-convergence which will be widely employed
in the following. For more details on this tool we refer to the book [18]. Let X be a metric
space, we say that a sequence (Fn)n of functionals from X to R Γ-converges to F at x if

Γ− lim inf
n→+∞

Fn(x) = Γ− lim sup
n→+∞

Fn(x), (2.1)

where the Γ-liminf and Γ-limsup are de�ned by{
Γ− lim inf Fn(x) = inf

{
lim infn→+∞ Fn(xn) : xn → x in X

}
Γ− lim supFn(x) = inf

{
lim supn→+∞ Fn(xn) : xn → x in X

}
.

(2.2)

Moreover, the sequence (Fn)n Γ-converges to F if it Γ-converges at every x in X. Then the
family (Fε)ε>0 Γ-converges to F if (Fεn)n∈N Γ-converges to F for any sequence (εn)n of positive
real numbers converging to 0. The following theorem reports the fundamental properties of
Γ-convergence (we refer to the �rst chapters in [18]).

Theorem 2.1. Assume that the sequence (Fn)n Γ-converges to F , then F is lower semicontin-
uous on X. Moreover if the family (Fn)n is equicoercive on X, then F is coercive too and for
any sequence of positive numbers εn converging to 0 the following holds:

(1) the sequence (infX Fn)n converges to the minimum of F on X,
(2) if xn is such that Fn(xn) ≤ infX Fn + εn and xnk

converges to x for some subsequence
(xnk

)k of (xn)n, then F (x) = minX F .

Remark. The sequence (Fn)n is equicoercive on X if for every t ∈ R there exists a compact
subset K of X such that {Fn ≤ t} ⊂ K for every n ∈ N.

The following proposition which links the Γ-convergence with the pointwise convergence in a
monotone case will be useful. We denote by F the lower semi-continuous envelope (or relaxed
functional) of F on X.
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Proposition 2.2. If Fn is a non-decreasing sequence on X, then

Γ− lim
n→∞

Fn = lim
n→∞

Fn = sup
n

Fn.

Remark. The proof of this proposition is simple and based just on the exploitation of the
de�nitions, see for instance [18] chapter 5, where it is stated in an even more general setting.

2.2. Regularization and approximating problems. We recall that the question we adress
in this article is to get an homogenization formula for the family of problems

(Pε) Inf

{
Fε(v) +

∫
Ω

β(x)v(x)dx : v ∈ C0(Ω)
}

where the functionals Fε are de�ned on C0(Ω) and given by

Fε(v) :=


∫

Ω

f(
x

ε
,Dv(x))dx if v ∈ W 1,∞(Ω) ∩ C0(Ω),

+∞ elsewhere.

We regularize the integrand f by inf-convolution in order to get an approximating family of
integrands (fλ)λ>0 satisfying standard growth conditions of order N + 1. Each function fλ is
given by

∀x, ξ fλ(x, ξ) := inf
{
f(x, ζ) + λ|ξ − ζ|N+1 : ζ ∈ RN

}
where λ is a positive parameter intended to go to +∞. The main properties of this new integrand
are the following:

(1) for any x and ξ, ||ξ| −R|N+1 ≤ fλ(x, ξ) ≤ f(x, 0) + λ|ξ|N+1,

(2) fλ(x, ξ) → f(x, ξ) increasingly when λ →∞.

The main consequence of the �rst property is that the associated functionals Fε,λ given on C0(Ω)
by

Fε,λ(v) :=


∫

Ω

fλ(
x

ε
,Dv(x))dx if v ∈ W 1,N+1(Ω; RN ) ∩ C0(Ω),

+∞ elsewhere,
(2.3)

is coercive as well as lower semicontinuous on C0(Ω).
The approximating energies associated to each Fε we will then consider are the functionals

Fε,λ de�ned by (2.3) for positive real numbers λ. The approximating problems are thus

(Pε,λ) Inf

{
Fε,λ(v) +

∫
Ω

β(x)v(x)dx : v ∈ C0(Ω)
}

.

As we shall see, the monotonicity of this regularization scheme will be of help in the proof of
theorem 4.1.

2.3. The classical periodic homogenization formula. In this section we report a classical
result in the periodic homogenization theory. This part of the theory has been widely developped
in the literature, having to select a reference we refer to the recent book [5] (chapter 14).

De�ne Gε : C0(Ω) → R as follows

Gε(v) :=


∫

Ω

g(
x

ε
,Dv(x))dx if v ∈ W 1,p(Ω) ∩ C0(Ω),

+∞ elsewhere,

where N < p < ∞ and the integrand g is a Borel function which satis�es the following conditions:

• (periodicity) g(·, ξ) is ]0, 1[N -periodic for all ξ,
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• (convexity) g(x, ·) is l.s.c. and convex for all x,
• (standard p− growth conditions) there exist 0 < a ≤ b such that

a|ξ|p ≤ g(x, ξ) ≤ b(1 + |ξ|p)

for all x and ξ.

Under the above assumptions, the following theorem holds.

Theorem 2.3. The functionals (Gε)ε Γ− converge in C0(Ω) as ε → 0 to Ghom, with

Ghom(v) :=


∫

Ω

ghom(Dv(x))dx if v ∈ W 1,p(Ω) ∩ C0(Ω),

+∞ elsewhere,

where ghom : RN 7→ R+ is given for ξ ∈ RN by the following formula

ghom(ξ) := inf

{∫
]0,1[N

g(x, ξ + Dv(x))dx : v ∈ W 1,p
# (]0, 1[N ) ∩ C(]0, 1[N )

}
. (2.4)

As a consequence, we get the following homogenization results for the approximating func-
tionals (Fε,λ)ε for �xed λ > 0.

Corollary 2.1. For any λ > 0, the family of functionals (Fε,λ)ε Γ-converges to Fhom,λ with

Fhom,λ(v) :=


∫

Ω

fhom,λ(Dv(x))dx if v ∈ W 1,N+1(Ω) ∩ C0(Ω),

+∞ elsewhere,

for the uniform convergence in C0(Ω) and where fhom,λ is given by

fhom,λ(ξ) := inf

{∫
]0,1[N

fλ(y, ξ + Dv(y))dy : v ∈ W 1,N+1
# (]0, 1[N ) ∩ C(]0, 1[N )

}
.

3. The main results

The main result of this paper is the following Γ-convergence property for the family (Fε)ε>0.

Theorem 3.1. Assume that the hypotheses (1), . . . , (3) as well as (1.1) hold. Then the family
of functionals (Fε)ε>0 Γ-converges in C0(Ω) to the homogenized functional Fhom.

As we shall see in the proof of the above theorem (see �4), the Γ−lim inf estimate on the family
(Fε)ε does not require hypothesis (1.1), which is only necessary for the proof of the upper-bound
for the Γ− lim sup.

Since the family (Fε)ε is equicoercive on C0(Ω), we infer from theorems 2.1 and 3.1 the
following result, that is the homogenization property discussed in the introduction.

Theorem 3.2. Assume that the hypotheses (1), . . . , (3) and (1.1) hold, then the family of min-
ima (Min(Pε))ε of the problems (Pε) converges as ε goes to 0 to the minimum Min(Phom) of
(Phom). Moreover, if for each ε > 0 the function uε is a minimizer of (Pε), and if (uεk

)k

converges in C0(Ω) to some function uhom, then uhom is a minimizer of (Phom) and

lim
k→+∞

(
Fε(uεk

) +
∫

Ω

β(x)uεk
(x)dx

)
= Fhom(uhom) +

∫
Ω

β(x)uhom(x)dx = Min(Phom).
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Remark. In the above result, the linear functional v 7→
∫
Ω

β(x)v(x)dx may of course be
replaced by any continuous functional v 7→ F (v) on C0(Ω).

In [16], a Γ-convergence result analogous to theorem 3.1 is obtained under more restrictive
hypotheses than (1) . . . (3), while the hypothesis (1.1) is replaced by the part a) of (1.1), i.e.

0 belongs to the interior of dom(fhom) (3.1)

In [19], theorem 3.1 is also shown under slightly more restrictive hypotheses than those assumed
here, and (1.1) is replaced by the following alternative: either (3.1) holds or the interior of Chom

is empty and b) of (1.1) holds. We notice that part b) of (1.1) may be satis�ed even if the
interior of Chom is empty. For instance, take f(x, ξ) := |ξ|2 + δ[0,1[N (ξ) for any x and ξ: then

Chom := [0, 1[N and b) of (1.1) holds with w = u0 (the function identically 0 on Ω).

4. Proof of theorem 3.1

We split the proof of the Γ-convergence result into two parts: the �rst one, which is devoted to
the proof of the lower-bound on the Γ-liminf, is mainly based on theorem 4.2 and the properties
of the Moreau-Yosida approximation, while in the second part the upper bound for the Γ-limsup
is obtained by �ne approximation arguments.

4.1. Proof of the lower bound Γ− lim inf Fε ≥ Fhom.

This section is devoted to the following lower bound for the Γ− lim inf of the family (Fε)ε.

Theorem 4.1. Assume that the hypotheses (1), . . . , (3) hold, then Γ− lim infε Fε ≥ Fhom.

The corner stone of our proof of this theorem is the following Γ-convergence result for the
approximating functionals Fε,λ. Its proof mainly relies on the fact that the approximation scheme
λ 7→ fλ is monotone.

Theorem 4.2. Assume that the hypotheses (1), . . . , (3) hold, then for every ε > 0, the family
of functionals (Fε,λ)λ>0 Γ-converges in C0(Ω) to Fε as λ →∞. Moreover, one has

Γ− lim
λ

(Γ− lim
ε

Fε,λ) = Γ− lim
λ

Fhom,λ = Fhom

where the Γ-limit is taken for the uniform convergence norm on C0(Ω).

Since for any λ > 0 and ε > 0 one has Fε ≥ Fε,λ on C0(Ω), we easily infer from theorem 4.2
that

Γ− lim inf
ε

Fε ≥ Γ− lim inf
λ

(Γ− lim inf
ε

Fε,λ) = Fhom

where the Γ-limits are taken for the uniform convergence norm on Ω. It thus remains to prove
theorem 4.2.

We begin with a result on the Γ-convergence of non-decreasing families of integral functionals.
This result is not optimal but it is su�cient for our purpose, and its proof is given here for the
sake of completeness.

Proposition 4.3. Let ω be a bounded open subset of RN , and (gλ)λ>0 be a non-decreasing
family of normal integrands from ω × RN to [0,+∞] . We assume that the integral functionals
Gλ de�ned on C(ω) by

Gλ(v) :=


∫

Ω

gλ(x,Dv(x))dx if v ∈ X,

+∞ otherwise,
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are lower semicontinuous on X, where X is a closed subspace (in W 1,N+1(ω)) of W 1,N+1(ω) ∩
C(ω). Let g∞ : ω×RN → R∪{+∞} denote the pointwise limit (as λ tends to in�nity) of (gλ)λ>0

and G∞ the associated functional on C(ω) given by

G∞(v) :=
{ ∫

Ω
g∞(x,Dv(x))dx if it is finite and v ∈ X,

+∞ otherwise.

Then the family of functionals (Gλ)λ>0 Γ-converges to G∞ in C(ω).

Proof. Since the family (Gλ)λ>0 is non-decreasing on C(ω), we conclude from Proposition 2.2
that

Γ− lim
λ→+∞

Gλ = sup
λ>0

Gλ

where the Γ-limit is taken for the uniform convergence on ω. It thus remains to prove that
G∞ = supλ Gλ. Let v belong to C(ω), then if G1(v) = +∞ one gets supλ Gλ(v) = +∞ =
G∞(v), which is our claim. Otherwise, the function g1(., Dv(.)) belongs to L1(Ω) so that we can
apply Lebesgue's monotone convergence theorem to the non negative and non decreasing family
(gλ(·, Dv(·))− g1(·, Dv(·)))λ>0, which yields

lim
λ→+∞

Gλ(v) = sup
λ>0

Gλ(v) = G∞(v).

This concludes the proof. �

As a consequence of proposition 4.3, we easily get the �rst part of theorem 4.2, that is

Γ− lim
λ→+∞

Fε,λ = Fε

where the Γ-limit is taken for the uniform convergence norm on C0(Ω). Proposition 4.3 also
yields the following convergence result.

Lemma 4.4. The family (fhom,λ)λ>0 is non decreasing on RN and converges to fhom as λ tends
to +∞.

Proof. The monotonicity of the family (fhom,λ)λ>0 follows from that of fλ. For any ξ in RN ,
λ > 0 and (y, ζ) in ]0, 1[N×RN , we set

gξ
λ(y, ζ) := fλ(y, ξ + ζ),

gξ
∞(y, ζ) := f(y, ξ + ζ),

and de�ne the associated functionals on C(]0, 1[N )

Gξ
λ(v) :=



∫
]0,1[N

gξ
λ(y, Dv(y))dy when v ∈ W 1,N+1

# (]0, 1[N ) ∩ C(]0, 1[N )

and
∫
]0,1[N

v(x)dx = 0,

+∞ otherwise,

Gξ
∞(v) :=



∫
]0,1[N

gξ
∞(y, Dv(y))dy when v ∈ W 1,∞

# (]0, 1[N ) ∩ C(]0, 1[N )

and
∫
]0,1[N

v(x)dx = 0,

+∞ otherwise.

With these notations, one has fhom,λ(ξ) = inf(Gξ
λ) as well as fhom(ξ) = inf(Gξ

∞). Notice

that each functional Gξ
λ is lsc on C(]0, 1[N ). Since the family (gξ

λ)λ>0 is non-decreasing and
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converges to gξ
∞, we can apply proposition 4.3 so that the family (Gξ

λ)λ>0 Γ-converges to Gξ
hom

in C(]0, 1[N ). Since the family (Gξ
λ)λ>0 is equicoercive, we deduce from theorem 2.1 that the

family (fhom,λ(ξ))λ>0 converges to fhom(ξ), and the proof is complete. �

As a consequence of proposition 4.3 and lemma 4.4, the family (Fhom,λ)λ>0 Γ-converges in
C0(Ω) to Fhom as λ tends to +∞.

This concludes the proof of theorem 4.2.

4.2. Proof of the upper bound Γ− lim supFε ≤ Fhom.

We now prove the upper-bound on the Γ-limsup of the family (Fε)ε, which is stated as follows.

Theorem 4.5. Assume that the hypotheses (1), . . . , (3) hold as well as hypothesis (1.1), then
Γ− lim supε Fε ≤ Fhom.

To prove this theorem, we introduce the following functional G, given on C0(Ω) by

G(v) :=


∫

Ω

g(Dv(x))dx if it is �nite and v in W 1,∞(Ω) ∩ C0(Ω)

+∞ elsewhere,

where the integrand g is de�ned on RN by g(ξ) = fhom(ξ) if ξ 6= 0 and

g(0) = inf

{∫
]0,1[N

f(y, Dv(y))dy : v ∈ W 1,∞(]0, 1[N ) ∩ C0(]0, 1[N )

}
.

We notice that the integrand g obviously has the same domain as fhom, and we shall denote this
domain Chom in the following. Notice that Chom is a bounded convex subset of RN . We also
point out that for any ξ in Chom, the in�mum in the de�nition of fhom (or g) is attained thanks
to hypothesis (3).
Remark. If a) of (1.1) holds, then Fhom ≤ G while if b) of (1.1) holds then Fhom = G

We now proceed in three steps for the proof of theorem 4.5. We �rst we prove that Γ −
lim supFε(u) ≤ G(u) holds for the function u = u0 where u0 denotes the null function on Ω.
Then we notice that if 0 is not in the interior of Chom then the theorem follows from hypothesis
(1.1). Otherwise, when 0 ∈ int(Chom), we extend the inequality Γ − lim supFε(u) ≤ G(u) to
the functions u which are continuous, piecewise a�ne and have compact support in Ω. What we
mean by �u is continuous, piecewise a�ne and has compact support in Ω� is that u belongs to
C0(Ω) and there exists a �nite family (Ki)1≤i≤n of disjoint open sets in Ω such that ∪{1≤i≤n}Ki

is relatively compact in Ω, u is a�ne on each Ki and u is null on K0 := Ω\∪{1≤i≤n}Ki. We then
infer Γ−lim supFε(u) ≤ Fhom(u) for any such function u, and �nally we prove it for any function
u in the domain of Fhom (there is nothing to prove for functions u for which Fhom(u) = +∞).
The proofs of these steps consist in the following serie of lemmas, which hold under the same
assumptions as those of theorem 4.5.

Lemma 4.6. (Γ− lim supFε) (u0) ≤ G(u0), where u0 denotes the null function on Ω.

Proof. Let w0 in W 1,∞(]0, 1[N ) ∩ C0(]0, 1[N ) be such that

g(0) =
∫

]0,1[N
f(y, Dw0(y))dy

For each positive real number ε, we set Zε := {z ∈ ZN : ε(z+]0, 1[N ) ⊂ Ω}, and ωε :=
Ω \ (∪{z∈Zε}ε(z + [0, 1]N )). We notice that since Ω is open, |ωε| → 0 as ε goes to 0. We also set
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Rε := {z ∈ ZN : ε(z+]0, 1[N )∩ ωε 6= ∅}, and we notice that ∪{z∈Rε}ε(z + [0, 1]N ) is included in

ωε + B(0, ε1/N ). We now consider the family (u0
ε)ε of functions of W 1,∞(Ω) ∩ C0(Ω) given by

u0
ε(x) :=

{
εw0(x−εz

ε ) if x ∈ ε(z+]0, 1[N ) for some z ∈ Zε

0 if x ∈ ωε.

The family (u0
ε)ε then converges in C0(Ω) to u0, and we have

Fε(u0
ε) =

∫
ωε

f(
x

ε
, 0)dx +

∑
z∈Zε

εN

∫
]0,1[N

f(y, Dw0(y))dy

≤
∑

z∈Rε

εN

∫
]0,1[N

f(y, 0)dy + | ∪{z∈Zε} ε(z+]0, 1[N )|g(0)

≤ |ωε + B(0, ε1/N )|
∫

]0,1[N
f(y, 0)dy + |Ω|g(0).

Since |ωε + B(0, ε1/N )| goes to 0 as ε goes to 0 and f(., 0) is in L1(]0, 1[N ), we infer that
lim supFε(u0

ε) ≤ |Ω|g(0) = G(u0), which concludes the proof. �

Lemma 4.7. Assume that 0 /∈ int(Chom), then the domain of the functional Fhom reduces to
u0.

Proof. Since 0 belongs to the boundary of the convex set Chom, there exists ξ in RN \ {0} such
that 〈ξ, ζ〉 ≤ 0 for every ζ in Chom.

Let u ∈ W 1,∞(Ω) ∩ C0(Ω) be such that Fhom(u) < +∞, we want to show that u = u0. Since

u = 0 on ∂Ω, we have

∫
Ω

Du(x)dx = 0 and thus

∫
Ω

〈Du(x), ξ〉 dx = 0. But as Fhom(u) < +∞,

Du(x) belongs to Chom for a.e. x in Ω, so that 〈Du(x), ξ〉 = 0 for a.e. x ∈ Ω.
Suppose that u 6≡ 0, we then extend u on RN by u := 0 on RN \Ω, and consider uδ := γδ ∗ u,

where δ is a positive real number and γδ is a molli�er, i.e. γδ(x) := δNγ(x
δ ) for some function γ

such that

γ ∈ C∞(RN , [0,+∞[) , spt(γ) ⊂ B(0, 1) and

∫
RN

γ(x)dx = 1 .

Since u 6≡ 0, for δ small enough there exists y in RN such that uδ(y) 6= 0. If we de�ne v on R by
v(t) := uδ(y + tξ) for such δ and y, then v has compact support and

∀t ∈ R v′(t) =
〈
Duδ(y + tξ), ξ

〉
=

∫
RN

γδ(y + tξ − x) 〈Du(x), ξ〉 dx = 0

so that v is constant on R and hence null, which contradicts v(0) = uδ(y) 6= 0. �

If 0 doesn't belong to the interior of Chom, then we deduce from hypothesis (1.1) that g(0) =
fhom(0) so that G(u0) = Fhom(u0). Then lemmas 4.6 and lemma 4.7 yield that theorem 4.5
holds in this case.
N.B. From now on we thus assume that 0 belongs to the interior of Chom.

Lemma 4.8. Assume that u is continuous, piecewise a�ne, has compact support in Ω. Then
(Γ− lim supFε) (u) ≤ G(u).

Proof. Let (Ki)1≤i≤n be a �nite family of disjoint open sets such that ∪{1≤i≤n}K
i is relatively

compact in Ω, u is a�ne on each Ki and u is null on K0 := Ω \ ∪1≤i≤nKi. Then for each
i ∈ {1, . . . , n}, there exist αi in R and ξi in RN such that u(x) = ξi · x + αi for any x in Ki

(of course, we set ξ0 = 0 and α0 = 0). As a consequence, one has G(u) =
∑
{0≤i≤n} |Ki|g(ξi).

In the sequel, we assume that G(u) < +∞, otherwise there is nothing to prove. Moreover we
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assume that (ξi, αi) 6= (ξj , αj) for i 6= j.
For the indices i ∈ {0, . . . , n} such that ξi = 0, we set ui

ε = αi + u0
ε for any ε > 0, where the

family of functions (u0
ε)ε is that given in lemma 4.6. For the indices i in {1, . . . , n} for which

ξi 6= 0, we take wi in W 1,∞
# (]0, 1[N ) ∩ C(]0, 1[N ) so that

g(ξi) =
∫

]0,1[N
f(y, ξi + Dwi(y))dy.

For such indices i and ε > 0, we de�ne the function ui
ε ∈ W 1,∞(Ω) ∩ C(Ω) by

ui
ε(x) := ξi · x + αi + εwi

(
x− εz

ε

)
if x ∈ ε(z+]0, 1[N ) for some z ∈ ZN . (4.1)

Then for any i in {0, . . . , n}, the family (ui
ε)ε converges in C(Ω) to ui, where ui is de�ned on Ω

by ui(x) := ξi · x + αi.
Since the function u has compact support in Ω, we can extend it on RN by u ≡ 0 on

RN \ Ω. We may thus apply theorem 2.1 of [10] which state that the real-valued continuous
piecewise a�ne function u may be written as a �nite combination of �min� and �max� of its a�ne
components. We shall formally denote u := c(u0, . . . , un) where c is a combination of �min� and
�max� operators. For any positive ε, we then de�ne the function uε ∈ C(Ω) through the same
combination uε := c(u0

ε, . . . , u
n
ε ). We now set Ki

ε := {x ∈ Ω : uε(x) = ui
ε(x)}\∪{j<i}K

j
ε for any

ε > 0 and i ∈ {0, . . . , n}. We notice that Duε(x) = Dui
ε(x) for almost every x in Ki

ε. Moreover,
uε = 0 on ∂Ω for ε small enough, so that one has

Fε(uε) =
n∑

i=0

∫
Ki

ε

f(
x

ε
,Dui

ε(x))dx. (4.2)

The same argument as in the proof of lemma 4.6 then yields

| ∪{z∈Zi
ε} ε(z+]0, 1[N )|g(ξi) ≤

∫
Ki

ε

f(
x

ε
,Dui

ε(x))dx ≤ |Ki
ε + B(0, ε1/N )|g(ξi) (4.3)

for any ε > 0 and i ∈ {1, . . . , n}, where Zi
ε := {z ∈ ZN : ε(z+]0, 1[N ) ⊂ Ki

ε}. Since the
families of functions (ui

ε)ε converge uniformly on Ω to ui for any i, we infer that (uε)ε converges
uniformly on Ω to u and that the families of (|Ki

ε|)ε converge to |Ki| for any i. We then infer
from (4.3) that for any index i ∈ {1, . . . , n} one has

lim sup
ε→0

∫
Ki

ε

f(
x

ε
,Dui

ε(x))dx ≤ |Ki|g(ξi)

Then same inequality also holds for the index i = 0 by the same argument as in the proof
of lemma 4.6. Therefore, the identity (4.2) yields lim supFε(uε) ≤ G(u), which concludes the
proof. �

Lemma 4.9. Assume that 0 belongs to the interior of Chom. If u is continuous, piecewise a�ne,
has compact support in Ω then (Γ− lim supFε) (u) ≤ Fhom(u).

Proof. Let u be continuous, piecewise a�ne, with compact support in Ω and such that Fhom(u) <
+∞. As in the proof of lemma 4.8, (Ki)1≤i≤n is a �nite family of disjoint open sets such that

∪{1≤i≤n}K
i is relatively compact in Ω, u is a�ne on each Ki and u is null on K0 := Ω\∪1≤i≤nKi.

We shall then write u(x) := ξi.x + αi for any x ∈ Ki. We claim that there exists a sequence of
continuous, piecewise a�ne functions (un)n with compact support in Ω which converges to u in
C0(Ω) and for which limn→+∞G(un) = Fhom(u).

Let I := {i : ξi = 0} and J := {0, . . . , n} \ I, we notice that for j ∈ J one has g(ξj) =
fhom(ξj). For any i ∈ I and n ∈ N∗, we set Zi

n := {z ∈ ZN : 1
n (z + [0, 1]N ) ⊂ Ki} and we set
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Ωn := ∪{i∈I} ∪{z∈Zi
n}

1
n (z + [0, 1]N ). Notice that Ωn ⊂⊂ Ω. Let now w be the piecewise a�ne

function on [0, 1]N given by

w(x) := w(x1, . . . , xN ) = min{x1, . . . , xN , 1− x1, . . . , 1− xN},
then w is constant equal to 0 on the boundary of [0, 1]N and 0 < |Dw| ≤ 1 a.e. in [0, 1]N . For
any n ∈ N∗ we de�ne the function un ∈ C0(Ω) as follows:

un(x) :=
{

u(x) if x in Ω \ Ωn,
u(x) + 1

n2 w(nx− z) if x in 1
n (z + [0, 1]N ) with z ∈ Zi

n.

For any n, the function un is then continuous, piecewise a�ne and has compact support in Ω;
moreover, the sequence (un)n converges to u in C0(Ω). Since Dun 6= 0 almost everywhere in Ωn,
one has ∫

Ki

g(Dun(x))dx = |Ki \ Ωn|g(0) +
∑

z∈Zi
n

∫
1
n (z+[0,1]N )

fhom(Dun(x))dx

= |Ki \ Ωn|g(0) + |Ki ∩ Ωn|
∫

]0,1[N
fhom

(
1
n

Dw(x)
)

dx

for any i ∈ I. Since fhom is Lipschitz continuous in a neighborhood of 0, we deduce from the
previous inequality that limn→+∞G(un) = Fhom(u).

We can now conclude from the lower-semicontinuity of the functional Γ− lim supFε and from
lemma 4.8 that

Γ− lim supFε(u) ≤ lim inf
n→∞

Γ− lim supFε(un) ≤ lim inf
n→∞

G(un) = Fhom(u).

�

To complete the proof of theorem 4.5, it thus remains to prove the following.

Lemma 4.10. Assume that 0 belongs to int(Chom) and take u in W 1,∞(Ω) ∩ C0(Ω) such that
Fhom(u) < +∞. Then Γ− lim supFε(u) ≤ Fhom(u).

Proof. It follows from lemma 4.9 that it is su�cient to show that there exists a family (uη)η of
functions which are continuous, piecewise a�ne and which have compact support in Ω and such
that

(uη)η converges in C0(Ω) to u and lim sup
η→0

Fhom(uη) ≤ Fhom(u) .

To de�ne such a sequence (uη)η, we �x some positive real number η, and proceed in three steps.
First step. For α in ] 12 , 1[, we consider the Lipschitz function θα given on R by

θα(y) :=


0 if |y| ≤ 1−α

2 ,
2

1+αy − sign(y) 1−α
1+α if 1−α

2 ≤ |y| ≤ 1,

y if |y| ≥ 1.

Then if we set vα,n := 1
nθα(nαu), the family (vα,n)n∈N converges in C0(Ω) to αu. Notice that

for every α and n, vα,n has compact support in Ω since u ∈ C0(Ω). Moreover, for almost every
x in Ω, Dvα,n(x) = αθ′α(nαu(x))Du(x). But for every y in R, θ′α(y) belongs to [0, 2

1+α [. As a

consequence, Dvα,n(y) belongs to 2α
1+αChom ⊂⊂ Chom for a.e. x in Ω. Since fhom is convex, we

get

Fhom(vα,n) ≤
∫

Ω

fhom(Du(x))dx + (1− α)
∫

Ω

fhom(0)dx,

so that for α close enough to 1 and n large enough, we have Fhom(vα,n) ≤ Fhom(u)+ 1
3η, as well

as ‖u− vα,n‖L∞(Ω) ≤ 1
3η. We now �x such an α and n, and extend v := vα,n by 0 on RN \ Ω.
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Second step. For any δ > 0 we set vδ := γδ ∗ v, where γδ is a molli�er de�ned as in the proof
lemma 4.7. Since spt(vδ) ⊂ spt(v) + B(0, δ), vδ has compact support in Ω. We infer from the
de�nition of v, the convexity of Chom and from the identity

∀x ∈ RN Dvδ(x) =
∫

RN

γδ(x− y)Dv(y)dy

that Dvδ(x) also belongs to 2α
1+αChom for a.e. x in Ω. Since fhom is Lipschitz continuous on

2α
1+αChom, we may choose δ small enough to have ‖vδ − v‖L∞(Ω) ≤ 1

3η as well as Fhom(vδ) ≤
Fhom(v) + 1

3η.
Third step. For such a positive real number δ, the function vδ is of class C∞ and has compact

support in Ω. It can thus be approximated by a sequence (vδ,k)k of continuous and piecewise
a�ne functions with compact support in Ω and which converge to vδ in W 1,∞(Ω). Then for
k large enough, Dvδ,k belongs to βChom almost everywhere in Ω for some β ∈]0, 1[. Once
again we use the fact that fhom is Lipschitz continuous on βChom, so that for k large enough,
the continuous and piecewise a�ne function uη := vδ,k has compact support in Ω and satis�es
‖vδ − uη‖L∞(Ω) ≤ 1

3η as well as Fhom(uη) ≤ Fhom(vδ) + 1
3η.

Finally, we thus get a family (uη)η>0 such that ‖u−uη‖L∞(Ω) ≤ η and Fhom(uη) ≤ Fhom(u)+η
for all η > 0. This concludes the proof. �

Lemmas 4.6 to 4.10 conclude the proof of theorem 4.5.
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