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COMPLETION OF THE SPACE OF MEASURES IN THE

KANTOROVICH NORM

G. BOUCHITTÉ, T. CHAMPION, C. JIMENEZ

Abstract. In this note we propose a new characterization of the completion
of the set of balanced bounded measures compactly supported in Rd with
respect to the Monge-Kantorovich norm. This extends the well known case
d = 1 (see [6]). Di�erent issues connected with the existence of Monge dual
potentials and tangent spaces to measures (see [1],[3],[4]) are also discussed.

1. Introduction and notations

A lot of work has been devoted to duality principles in the Monge -Kantorovich
theory of mass transport. In particular L. Hanin wrote a series of papers on the
characterization of the dual of Lipschitz classes (see [6],[7]). Very recently a lot
of attention has been focused on in�nite sum of dipoles as elements of the dual
of Lip(X)∗ (X beeing a complete metric space). Such dipoles appear as natural
objects in the description of singularities of maps occuring in the theory of liquid
crystals (see [5],[10]). As emphasized by H. Brezis, these in�nite sums are not
measures of �nite total variation but can be viewed as particular distributions of
order one.

In order to simplify the presentation, we will work on a compact subset K = Ω
where Ω is a bounded connected open subset of Rd with C0,1 boundary and we will
denote by

• | · | the Euclidean norm in Rd, d(x, y) the associated geodesic distance on
Ω extended to K, ΞA the characteristic function of a subset A in Rd.

• C0(K) the space of continuous functions on K endowed with the sup norm
‖ · ‖∞,

• Lip(K) the Banach space of Lipschitz functions on K endowed with the

norm Lip(ϕ) := sup{ϕ(y)−ϕ(x)
d(x,y) , (x, y) ∈ K2, x 6= y},

• Lip0(K) := Lip(K)/R its quotient by the constants,
• Lip1(K) := {u ∈ Lip(K) : |∇u| ≤ 1 a.e. on Ω},
• M(K; Rd) (resp M+(K)) the space of Rd-valued (resp. positive) Borel
measures on Rd compactly supported in K. Every element λ ∈ M(K; Rd)
can written as λ = σµ where µ ∈ M+(K), σ ∈ L1

µ(K; Rd). In particular
we may choose |σ| = 1 µ-a.e., so that µ = |λ| the total variation of λ and
σ = dλ

d|λ| (polar decomposition).

• M0(K) the space of signed Radon measures µ supported in K such that∫
µ = 0. it is endowed with the Kantorovich norm (associated with the

metric space (K, d)): ‖µ‖1 = sup{
∫

K
ϕdµ : ϕ ∈ Lip1(K)}.
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It is well known that on subsets ofM0(K) which are uniformly bounded in total
variation, the topology induced by ‖ · ‖1 is equivalent to the weak star topology
on measures. It can be easily checked (see [6]) that the dual space M0(K)? is
isomorphic to Lip0(K) through the map: L ∈ M0(K)? 7→ ϕ where ϕ(x) = L(δx −
δa), a ∈ K. Therefore M0(K) can be identi�ed with a subspace of its bidual, thus
with a subspace of Lip0(K)?.

Now we claim that the normed space (M0(K), ‖ · ‖1) is non complete: indeed
let (an, bn) a sequence in K2 such that

∑
|bn − an| < +∞ and an 6= bm,∀(n, m).

Clearly the �nite sum of dipoles µn =
∑n

1 (δbn − δan) is a Cauchy sequence whose
limit as an element of Lip0(K)? is not a measure of �nite mass. Our aim is to
characterize the completion of M0(K) or equivalently the closure of M0(K) as a
subspace of Lip0(K)?. As will be seen later, the main feature of an element f in
this space is that the supremum in the dual Kantorovich problem

sup {〈f, ϕ〉 : ϕ ∈ Lip1(K)} (= ‖f‖1), (1.1)

has at least one solution (called Monge-Kantorovich potential).
In all the paper we will denote byM0,1(K) the completion ofM0(K) in (Lip0(K)?, ‖·

‖1). We emphasize that it is a strict subspace Lip0(K)? since otherwise Lip0(K)
would be a re�exive Banach space. To our knowledge a characterization ofM0,1(K)
is known only for d = 1. This appears in [6] where the case d > 1 is presented as
an open problem.

The paper is organized as follows: in section 2, we give a characterization of
M0,1(K) (see Theorem 2.4); in section 3, we give an alternative representation by
introducing a suitable class of tangential vector measures in M(K; Rd).

2. The Banach space M0,1(K).

First we show that M0,1(K) can be identi�ed to a subspace of D′1(K) the dis-
tributions on Rd of order one supported in K. For every f ∈M0,1(K), the bracket
〈f, ϕ〉 is well de�ned for every ϕ ∈ Lip(K). We denote by Tf the distribution
obtained by setting 〈Tf , ϕ〉 = 〈f, ϕ〉 for every ϕ ∈ C∞(K).

Lemma 2.1. The map: f ∈ M0,1(K) 7→ Tf ∈ D′1(K) is injective. Furthermore
a distribution T ∈ D′1(K) is of the form Tf for a suitable f ∈M0,1(K) if and only
if, for every sequence {ϕn} in C∞(K), such that the following implication holds:

ϕn → c uniformly (c ∈ R) , sup
K
|∇ϕn| ≤ C =⇒ 〈T, ϕn〉 → 0. (2.1)

Proof. Let f ∈ M0,1(K) and let us show that Tf satis�es (2.1). By de�nition, for
every δ > 0, there exists a measure fδ ∈ M0(K) ‖f − fδ‖1 < δ. Let ϕn be as in
the left hand side of (2.1). Then:

|〈Tf , ϕn〉| ≤ |〈fδ, ϕn〉| + δ ‖∇ϕn‖∞ ≤ |〈fδ, ϕn〉| + C δ.

Since 〈fδ, c〉 = 0, the conclusion follows by letting n →∞, then δ → 0.
In fact the same argument works if we assume simply that {ϕn} is a equi-

Lipschitz family in Lip(K) converging to a constant: we still obtain that 〈f, ϕn〉 →
0. Therefore if Tf = 0 and ϕ ∈ Lip(K), by applying the previous property to
{ϕn − ϕ} where ϕn is a smooth approximation of ϕ, we infer that 〈f, ϕ〉 = 0. The
injectivity of the map f 7→ Tf follows.

Conversely we need to show that if T ∈ D1(K) is such that (2.1) holds true,
then T = Tf for a suitable f ∈ M0,1(K). First by (2.1), T can be extended in a
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unique way to Lip(K) and the resulting linear form on Lip(K) can be identi�ed as
an element f ∈ (Lip0(K))∗ such that T = Tf . To prove that this element f belongs
to M0,1(K) we use the following
Claim: There exists a sequence of linear operators: Sδ : C0(K) 7→ C∞(K) and
suitable constants C,Cδ such that

i) Lip(Sδϕ) ≤ Cδ‖ϕ‖∞, for every ϕ ∈ C0(K),
ii) Lip(Sδϕ) ≤ C Lip(ϕ) for every ϕ ∈ Lip(K) ,
iii) ‖Sδϕ− ϕ‖∞ ≤ δC Lip(ϕ) for every ϕ ∈ Lip(K).

Then we set fδ := T ◦ Sδ. By i) and ii), it is an element of M0(K). Choose ϕδ

in Lip1(K) so that 〈fδ − f, ϕδ〉 > ‖fδ − f‖1 − δ. We may rewrite this inequality as

‖fδ − f‖1 ≤ δ + 〈f,Ψδ〉 , where Ψδ := Sδ ϕδ − ϕδ. (2.2)

By ii) and iii), {Ψδ} is equi-Lipschitz and converges uniformly to 0 on K. It
follows from (2.1) and (2.2) that fδ → f in Lip0(K)?, and thus f ∈ M0,1(K)
(notice that by iii), Sδ is invariant over constant functions).

It remains to prove the claim. By a very nice result to be found in [11] (Theorem
3 p.174), there exists a linear continuous extension operator Ξ : C0(K) 7→ C0(Rd)
which also maps continuously Lip(K) into Lip(Rd). Notice that a priori no regular-
ity assumption is needed for the existence of such extension provided K is metrized
by the Euclidian norm. In our case we are allowed to choose the geodesic distance
which is equivalent since ∂K has been assumed to be Lipschitz. Note also that in
case K is convex, the map Ξ : ϕ 7→ ϕ ◦ p where p is the orthogonal projector on K
�ts to our purpose. Now we set Sδ ϕ to be the restriction to K of Ξ(ϕ) ? ρδ where
ρδ is a usual convolution kernel with support in B(0, δ). It is easy to check that Sδ

as a linear operator satis�es i), ii) and iii). �

Remark 2.2. The fact thatM0,1(K) is strictly embedded in (Lip0(K))? implies that
there are elements f ∈ (Lip0(K))? such that f 6= 0 and Tf = 0 (this not surprising
since C∞ functions are not dense in Lip(K)). The required property (2.1) for T in
order to be in M0,1(K) is nothing else but the continuity with respect to the weak
star topology of W 1,∞(Ω).

The existence of a Monge potential associated with f ∈M0,1(K) is obtained in

Lemma 2.3. Let f ∈ M0,1(K). Then there exists a Lipschitz function u ∈
Lip1(K) maximizing the problem (1.1).

Proof. Let {ϕn} be a maximizing sequence in Lip1(K). As 〈f, 1〉 = 0, it is no
restrictive to assume that ϕn(x0) = 0 at some point x0 ∈ Ω. By Ascoli's theorem,
there exists ϕ ∈ Lip1(K) and a subsequence {ϕnk

} such that ϕnk
→ ϕ uniformly

on K. By applying the property (2.1) established in Lemma 2.1 to {ϕnk
− ϕ}, we

derive that
〈f, ϕ〉 = lim

k→∞
〈f, ϕnk

〉 = sup{(1.1)}.

�

In the following, given an element T ∈ D′(Rd; Rd), we denote by div T the

distribution de�ned by 〈div T, ϕ〉 = −
∑

i〈Ti,
∂ϕ
∂xi
〉. Obviously if T is compactly

supported in K, so is div T . Thus the divergence operator maps D′(K; Rd) into
a subspace of D′(K). We will denote by div λ (resp div σ), the divergence of T
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if T is associated with a vector measure λ ∈ M(K; Rd) (resp a vector density
σ ∈ L1(Ω; Rd) ).

We recall (see for example the proof of Lemma 2.5) that for every f ∈ M0(K),
the problem

inf
{∫

|λ| : λ ∈M(K; Rd) , div λ = µ

}
, (2.3)

has at least a solution (optimal transport �ux) and moreover we have

inf(2.3) = sup{(1.1)} = W1(f+, f−),

where W1(f+, f−)(= ‖f‖1) denotes the Monge-Kantorovitch distance on (K, d)
from the non-negative part to the non-positive part of f . We are now in position

to state the main result of this section.

Theorem 2.4. The following equality holds between subsets of D′(K):

{Tf : f ∈M0,1(K)} =
{
−div σ : σ ∈ L1(Ω; Rd)

}
.

Futhermore, if V0 denotes the closed subspace V0 := {σ ∈ L1(Ω; Rd) : div σ = 0},
the linear map σ ∈ L1(Ω; Rd)/V0 7→ − div σ ∈M0,1(K) is an isometry, i.e.

‖σ‖L1(Ω;Rd)/V0 = ‖div σ‖1.

The proof relies on the following approximation result

Lemma 2.5. Let µ ∈ M0(K) and ε > 0. Then there exists σ ∈ L1(Ω; Rd) such
that

− div σ = µ ,

∫
K

|σ| dx ≤ ‖µ‖1 + ε. (2.4)

Proof. Following [2], we use a p-Laplace approximation of the problem (1.1). For
every p > d, we set

αp := − inf
{

1
p

∫
Ω

|∇u|p dx−
∫

K

u dµ : u ∈ W 1,p(Ω)
}

.

It turns out that the in�mum in the right hand side is attained at a unique point
up such that

∫
K

updx = 0. Set:

σp := |∇up|p−2∇up on Ω, σp = 0 on Rd \ Ω.

There holds :

−div σp = µ , αp =
1
p′

∫
Ω

|σp|p
′
dx (p' conjugate of p). (2.5)

Then by applying [2] (Theorem 4.2 and (4.15)), we have that:

• lim
p→∞

αp = ‖µ‖1,

• for a suitable subsequence {pk}, upk
→ u in C0(K) and σpk

→ λ weakly
(star) in M(K; Rd), where u, λ solve (1.1), (2.3).

In particular, as p → +∞ (thus p′ → 1), we deduce from (2.5) and Hölder
inequality that

limsup
p→∞

∫
Ω

|σp|dx ≤ limsup
p→∞

(∫
Ω

|σp|p
′
dx

)1/p′

|Ω|1/p = ‖µ‖1.

Therefore σp satis�es (2.4) for large p. �
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Remark 2.6. According to Theorem 2.4, the conclusions of Lemma 2.5 can be
extended to all µ ∈M0,1(K).

Proof of Theorem 2.4: We �rst prove the inclusion

{Tf : f ∈M0,1(K)} ⊂
{
−div σ : σ ∈ L1(Ω; Rd)

}
.

Let f ∈M0,1(K) and let {fn, n ≥ 1} be a sequence inM0(K) such that ‖fn−f‖1 →
0. Possibly after extracting a subsequence, we may assume that εn := ‖fn+1−fn‖1
satis�es

∑
εn < +∞. Thus setting f0 = 0 and µn := fn+1 − fn, we have written f

under the form

f =
∞∑

n=0

µn where µn ∈M0(K) , ‖µn‖ = εn.

Now by applying Lemma 2.5 to µn, we �nd ξn ∈ L1(Ω; Rd) such that

− div ξn = µn and

∫
K

|ξn| dx ≤ 2 εn. (2.6)

Then we de�ne σ :=
∞∑
0

ξn . By (2.6), it is an absolutely convergent series in

L1(Ω; Rd). As the divergence operator is continuous with respect to the convergence
in the sense of distributions, we deduce immediately from (2.6) that

−div σ =
∞∑
0

µn = f.

This �nishes the proof of the �rst inclusion; the reverse inclusion is a straightforward
application of Lemma 2.1 and the �rst assertion of Theorem 2.4 follows. It is easy to
check that the linear map L : σ ∈ L1(Ω; Rd) 7→ div σ ∈ (Lip0(K))? is continuous.
More precisely:

‖div σ‖1 = sup
{∫

K

(σ · ∇ϕ) dx , ϕ ∈ Lip1(K)
}
≤ ‖σ‖L1(Ω;Rd). (2.7)

Now as shown before, the range of L is exactly M0,1(K) which by construction
is a closed subspace of (Lip0(K))?. By the closed graph theorem, we induce that
there exists a suitable constant C > 0 such that

‖σ‖L1(Ω;Rd)/V0 ≤ C ‖div σ‖1. (2.8)

We claim that in (2.8) we can take C = 1, so that combining with (2.7) we
deduce the required equality. To prove the claim for a given σ ∈ L1(Ω; Rd), we set
f := −div σ and we consider any approximating sequence fn ∈ M0(K) such that
‖fn − f‖1 ≤ 1

n . Owing to lemma 2.5, for every ε > 0, there exists σn ∈ L1(Ω; Rd)
such that

− div σn = fn ,

∫
K

|σn| dx ≤ ‖f‖1 + ε. (2.9)

On the other hand, by (2.8), there exists ξn ∈ L1(Ω; Rd) such that

− div ξn = f − fn ,

∫
K

|ξn| dx ≤ C ‖f − fn‖1 + ε. (2.10)

Therefore, from (2.9) and (2.10) it follows that div (σn + ξn) = div σ so that

‖σ‖L1(Ω;Rd)/V0 ≤ ‖σn + ξn‖L1(Ω;Rd) ≤ ‖f‖1 + C ‖f − fn‖1 + 2ε.
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The claim hence the proof of Theorem 2.4 is achieved by letting n →∞ and ε → 0.
�

3. Optimal transport through tangential vector

In this section, we want to answer the following question: let λ be a vector
measure in M(K; Rd), do we have that −div λ, as a distribution on Rd, belongs
to M0,1(K) ? Owing to our Theorem 2.4, this is cleary true for those λ which
are absolutely continuous with respect to the Lebesgue measure on Ω. However, it
cannot be true in general as shown in the following example:

Example 3.1. Let d = 2, K = [−2, 2]2 and S0 = [−1, 1] × {0}. Then λ :=
(0, 1)H1 S0 is an element ofM(K; R2) but −div(λ) does not belong toM0,1(K).
Indeed the condition (2.1) in Lemma 2.1 is violated if we choose the sequence in

C∞(K) de�ned by ϕn(x, y) =
1
n

sin(ny). Clearly this sequence converges uniformly

to 0 on K, satis�es the upperbound supK |∇ϕn| ≤ 1, whereas 〈λ, ϕn〉 = 2 for every
n ≥ 1. We notice that, in this example, the direction of the measure λ is or-
thogonal to the segment S0 where it is supported. In contrast choosing a measure
like λ = (1, 0)H1 S0 would lead to the conclusion that −div(λ) does belong to
M0,1(K). This latter fact falls in the framework of tangential measures described
below.

Take λ ∈ M(K, Rd) and consider a decomposition λ = σµ with µ ∈ M+(K)
and σ ∈ L1

µ(K, Rd). As noticed in the above example, if −div(λ) ∈ M0,1(K) then
Lemma 2.1 implies that for any equi-Lipschitz sequence (ϕn) in C∞(K) such that
ϕn → 0 uniformly on K one has

〈−div(λ), ϕn〉 = 〈λ,∇ϕn〉 =
∫

K

σ · ∇ϕn dµ → 0. (3.1)

This suggests the introduction of the following set:

N :=
{

ξ ∈ L∞µ (K, Rd) : ∃(un)n, un ∈ C∞(K), (3.2)

un → 0 uniformly , Dun → ξ in σ(L∞µ , L1
µ)

}
. (3.3)

The orthogonal of N in L1
µ(K, Rd) de�ned by

N⊥ :=
{

η ∈ L1
µ(K, Rd) :

∫
K

η · ξ µ(dy) = 0 for all ξ ∈ N
}

,

is a closed vector subspace of L1
µ(K, Rd). Following [[1],[3],[4]], we introduce the

notion of tangent space Tµ to the measure µ through the following local characteri-
zation of N⊥ (see [[9]] for further details related to the L∞-case under consideration
here):

Proposition 3.2. i) There exists a µ-measurable multifunction Tµ from K to the
subspaces of Rd such that:

ξ ∈ N⊥ ⇐⇒ ξ(x) ∈ Tµ(x) µ-a.e. x ∈ Rd.

ii) The linear operator u ∈ C1(K) 7→ Pµ(x)∇u(x) ∈ L∞µ (K; Rd) where Pµ(x)
denotes the ortogonal projector on Tµ(x) can be extended in a unique way as a linear
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continuous operator

∇µ : Lip(K) 7→ ∇µu ∈ L∞µ (K; Rd)

where Lip(K) is equipped with the uniform convergence on bounded subsets of
Lip(K) and L∞µ (K; Rd) with the weak star topology.

Remark 3.3. The second assertion of Proposition 3.2 asserts that a Lipschitz func-
tion admits, for every measure µ, a µ-a.e. de�ned tangential gradient. In the case
where µ is the k-dimensional Hausdor� measure on a smooth k-dimensional man-
ifold in Rd, this tangential gradient coincides with the one which is obtained by
using Rachemader Theorem on local charts representing the manifold.

Proof. i) We �rst show that N is a vector subspace of L∞µ (K, Rd) satisfying the
property

∀ξ ∈ N , ∀ϕ ∈ C1(K), ξϕ ∈ N . (3.4)

Let ξ ∈ N , and ϕ ∈ C1(K). There exists a sequence (un) in C1(K) such that:

un → 0 uniformly , Dun → ξ in σ(L∞µ , L1
µ).

Then one readily checks that the sequence (ϕun) satis�es

ϕun → 0 uniformly , D(unϕ) = ϕDun + (Dϕ)un → ϕξ in σ(L∞µ , L1
µ).

Thus ϕξ ∈ N and the claim (3.4) follows. We dedude immediately the following so
called �decomposability property� of the space N⊥ :

∀σ ∈ N⊥ , ∀A µ-measurable ⊂ K , σΞA ∈ N⊥ (3.5)

Indeed take a smooth sequence (ϕn)n converging to ΞA for the weak star topology
of L∞µ (K). For such a σ and for all ξ ∈ N , we get thanks to (3.4)

〈σ ΞA , ξ〉 =
∫

K
ΞA(y)σ(y) · ξ(y) dµ(y)

= lim
n→∞

∫
K

ϕn(y)σ(y) · ξ(y) dµ(y)

= lim
n→∞

〈ξ ϕn , σ〉 = 0

which concludes the proof of (3.5).
Then by applying [8] (Theorem 3.1 p158), there exists a closed valued µ− mea-

surable multifonction Tµ such that:

N⊥ =
{
σ ∈ L1

µ(K) ; σ(x) ∈ Tµ(x) µ− a.e.
}

.

Clearly Tµ(x) is a vector subspace of Rd (tangent space at x to the measure µ).

ii) We have to show that given an equi-Lipchitz sequence (un) in C1(K) con-
verging uniformly to u, then the sequence (Pµ∇un) does converge weakly star in
L∞µ . Since the set {∇un} is uniformly bounded in Rd, it is enough to check that
all its clusters points in L∞µ weak-star share the same orthogonal projection on Tµ.
Given ξ1, ξ2 two such points, we clearly have by (3.3) that ξ = ξ2 − ξ1 belongs to
N and then by i) Pµξ = 0. Thus Pµξ1 = Pµξ2 µ- a.e.

�
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Recalling (3.1)(3.3) and in view of the Proposition 3.2, it is natural to consider
measures λ = σµ such that σ ∈ N⊥. Therefore we introduce the space of tangential
measures on K de�ned as follows

MT (K, Rd) :=
{
λ = σ µ : µ ∈M+(K) , σ(x) ∈ Tµ(x) µ− a.e.

}
. (3.6)

It can be shown that the property λ ∈ MT (K, Rd) is independant of the chosen
decomposition λ = σµ (see for instance [1]).

Remark 3.4. If σ ∈ L1(Ω, Rd), then the measure σLd K is an element ofMT (K, Rd)
since TLd(x) = Rd a.e. on Ω. On the other hand, if λ ∈ MT (K, Rd), the condi-
tion dλ

d|λ| ∈ T|λ|(x), |λ|-a.e implies that dim(T|λ|(x)) ≥ 1, |λ|-a.e. As a consequence

elements of MT (K, Rd) are atomless.

The following proposition gives an equivalent de�nition for MT (K, Rd) and
solves the question raised in the introduction of this section:

Proposition 3.5. Let λ ∈ M(K, Rd), then −div(λ) ∈ M0,1(K) if and only if
λ ∈MT (K, Rd). In this case, writing λ = σ µ, we have for every u ∈ Lip(K):

() 〈−div λ, u〉 =
∫

K

σ · ∇µu dµ .

Proof. Let λ ∈ M(K, Rd) such that −div(λ) ∈ M0,1(K). Let µ ∈ M+(K) and
σ ∈ L1(K, Rd) such that λ = σµ. We are going to show that σ is in N⊥. For any
ξ in N , it exists a sequence (un)n in C∞(K) such that

un → 0 uniformly, Dun → ξ in σ(L∞µ , L1
µ).

As −div(λ) is inM0,1(K), according to Lemma 2.1, the condition (2.1) is satis�ed
for (un)n, so we get:∫

K

σ · ξ dµ = lim
n→∞

∫
K

σ · ∇un dµ = lim
n→∞

〈−div(λ), un〉 = 0.

As the above equality holds for any ξ in N , σ belongs to N⊥ and thus, by Propo-
sition 3.2 i), σ(x) ∈ Tµ(x) µ-a.e. that is λ ∈MT (K, Rd).

Conversely, let λ in MT (K, Rd), µ ∈ M+(K) and σ ∈ L1(K, Rd) such that
λ = σµ. Then by de�nition, there holds σ(x) ∈ Tµ(x), µ-a.e. Now if the sequence
(un)n is equilipschitz and converges uniformly to some u, by Proposition 3.2 ii),
the projected gradients Pµ ∇un do converge weakly star to ∇µu and therefore:

lim
n→∞

〈−div(λ), un〉 = lim
n→∞

∫
K

σ · ∇un dµ = lim
n→∞

∫
K

σ · ∇µun dµ =
∫

K

σ · ∇µu dµ.

(3.7)
So if u is a constant, the previous limit vanishes and the implication (2.1) holds

true. By Lemma 2.1 it follows that λ belongs to M0,1(K). Eventually, if u is an
arbitrary Lipschitz function, we see that the left hand side limit in (3.7) agrees with
〈−div(λ), u〉. That yields (3.5).

�

We are now in position to state the main result of this section:

Theorem 3.6. The following equality holds between subsets of D′(K):{
Tf : f ∈M0,1(K)

}
=

{
− div λ : λ ∈MT (K; Rd)

}
.
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Futhermore, for any f ∈M0,1(K), there exists λ ∈MT (Rd; Rd) such that:

‖f‖1 = |λ|(K) = min
λ∈MT (K;Rd)

{∫
|λ| : −div λ = f

}
.

Proof. As a consequence of Theorem 2.4 and Remark 3.4, we have:{
Tf : f ∈M0,1(K)

}
⊂

{
− div λ : λ ∈MT (K; Rd)

}
.

The reverse inclusion is a consequence of Proposition 3.5. It remains to show that
for any f ∈ M0,1(K):

‖f‖1 = min
λ∈MT (K;Rd)

{∫
|λ| : −div λ = f

}
.

Notice that by proposition 3.5, the in�mum in the right hand side could be taken
as well over all M(K, Rd). The existence of a minimal λ follows then by the lower
semicontinuity of the total variation and the fact that the distributional divergence
constraint is closed under the weak star convergence of measures. The value of
the minimum λ(K) is clearly below the in�mum taken over absolutely continu-
ous measures λ = σ dx (see remark 3.4) and by Theorem 2.4 this latter in�mum
agrees with ‖f‖1. To prove the converse inequality we simply notice that, for every
u ∈ Lip1(K), we have |∇µu| ≤ 1. Thus recalling (3.5), it follows that for every
admissible λ = σ µ: ∫

K

|λ| ≥
∫

K

(σ · ∇µ) dµ = −〈div λ, u〉.

�

Example 3.7. Let us consider again the in�nite sum of dipoles discussed in section
1, that is f =

∑
n(δbn

− δan
). It is di�cult to explicit a representation of f as

established in Theorem 2.4. However it becomes straightfoward in the framework of
lower dimensional tangential measures. Indeed consider any geodesic curve Sn ⊂ K
joining an to bn. Then, if τn denotes the oriented tangent vector of Sn, we obtain
an element λ ∈MT (K, Rd) such that −div λ = f by setting

λ :=
∑

n

τnH1 Sn.
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