CORRIGÉ DU SUJET MINES-PONTS 99 - MP

T. CHAMPION

1)a. Le fait que F_A est stable par combinaisons linéaires découle de la linéarité du passage à la limite. De plus F_A est non vide puisque les fonctions constantes (et en particulier la fonction nulle) sont des éléments de F_A : si f est une fonction constante égale à c sur I on a évidemment

$$\forall N \ge 1,$$

$$\frac{1}{N} \sum_{n=1}^{N} f(a_n) = \frac{1}{N} \sum_{n=1}^{N} c = c = \int_0^1 c \, dx = \int_0^1 f(x) \, dx.$$

1)b. Soit $\varepsilon > 0$, et f_1 et f_2 dans F_A vérifiant les deux propriétés. Puisque

$$\forall N \ge 1,$$

$$\frac{1}{N} \sum_{n=1}^{N} f_1(a_n) \le \frac{1}{N} \sum_{n=1}^{N} g(a_n) \le \frac{1}{N} \sum_{n=1}^{N} f_2(a_n),$$

on obtient

$$\liminf_{N\to+\infty} \frac{1}{N} \sum_{n=1}^{N} f_1(a_n) \leq \liminf_{N\to+\infty} \frac{1}{N} \sum_{n=1}^{N} g(a_n) \leq \limsup_{N\to+\infty} \frac{1}{N} \sum_{n=1}^{N} g(a_n) \leq \limsup_{N\to+\infty} \frac{1}{N} \sum_{n=1}^{N} f_2(a_n),$$

et comme $f_1, f_2 \in F_A$ on en déduit

$$\int_0^1 f_1(x) \, dx \, \leq \liminf_{N \to +\infty} \frac{1}{N} \sum_{n=1}^N g(a_n) \, \leq \limsup_{N \to +\infty} \frac{1}{N} \sum_{n=1}^N g(a_n) \, \leq \int_0^1 f_2(x) \, dx \, .$$

On déduit des hypothèses sur f_1 et f_2 que

$$\int_0^1 g(x) dx - \varepsilon \le \liminf_{N \to +\infty} \frac{1}{N} \sum_{n=1}^N g(a_n) \le \limsup_{N \to +\infty} \frac{1}{N} \sum_{n=1}^N g(a_n) \le \int_0^1 g(x) dx + \varepsilon.$$

Ceci étant valable pour tout $\varepsilon > 0$, on a donc

$$\lim_{N \to +\infty} \inf_{N} \frac{1}{N} \sum_{n=1}^{N} g(a_n) = \lim_{N \to +\infty} \sup_{N \to +\infty} \frac{1}{N} \sum_{n=1}^{N} g(a_n) = \int_{0}^{1} g(x) dx,$$

et on en déduit que g appartient à F_A .

- 1)c. La condition est nécessaire: si A est équi-répartie alors $F_A = E$ donc F_A est dense dans E. La condition est suffisante: supposons que F_A contient une partie dense dans E. Soit g un élément de E: pour démontrer que $g \in F_A$, il suffit de vérifier la condition de la question 1).b. Soit $\varepsilon > 0$, puisque F_A contient une partie dense dans E il existe un élément $f \in F_A$ tel que $\|g f\| \le \frac{\varepsilon}{2}$. On pose $f_1 := f \frac{\varepsilon}{2}$ et $f_2 := f + \frac{\varepsilon}{2}$, et on vérifie que f_1 et f_2 satisfont bien les conditions de 1).b.: $f_1, f_2 \in F_A$ car F_A est un sous-ev de E contenant les constantes, et les deux inégalités découlent directement des choix faits.
- **2)a.** On suppose que F_A contient la fonction h_J pour tout intervalle J. Alors il contient toutes les fonctions en escalier sur I puisque F_A est un sev de E. Toute fonction continue par morceaux sur I étant une limite uniforme sur I de fonctions en escalier, on en déduit que F_A contient alors une partie dense de E. Il découle de la question 1).c que A est équi-répartie.

T. CHAMPION

2)b. Il suffit de prendre, pour ε suffisamment petit:

$$f_{1}(x) := \begin{cases} 0 & si \ x \in [0,c], \\ \frac{1}{\varepsilon}(x-c) & si \ x \in [c,c+\varepsilon], \\ 1 & si \ x \in [c+\varepsilon,d-\varepsilon], \\ -\frac{1}{\varepsilon}(x-d) & si \ x \in [d-\varepsilon,d], \\ 0 & si \ x \in [d,1], \end{cases} \quad et \quad f_{2}(x) := \begin{cases} 0 & si \ x \in [0,c-\varepsilon], \\ \frac{1}{\varepsilon}(x-c+\varepsilon) & si \ x \in [c-\varepsilon,c], \\ 1 & si \ x \in [c,d], \\ -\frac{1}{\varepsilon}(x-d-\varepsilon) & si \ x \in [d,d+\varepsilon], \\ 0 & si \ x \in [d+\varepsilon,1]. \end{cases}$$

Si on suppose que F_A contient toutes les fonctions continues prenant les mêmes valeurs aux extrémités 0 et 1, alors d'après ce qui précède et 1).b F_A contient la fonction h_J pour tout intervalle J de I, et donc d'après la question 2)a. la suite A est équi-répartie.

2)c. Il suffit de remarquer que

$$\int_0^1 h_j(x) \, dx = d - c \quad et \quad \forall N \ge 1, \quad \frac{1}{N} \sum_{n=1}^N h_J(a_n) = \frac{N(J)}{N}.$$

La conclusion est donc nécessaire (si A est équi-répartie alors $h_J \in F_A$) et suffisante (question 2).a.).

3)a. On pose pour $a_n := r_n - [r_n]$ pour tout $n \ge 1$, et on remarque que

$$\forall N \ge 1, \qquad \frac{1}{N} \sum_{n=1}^{N} \exp(2 i \pi k r_n) \ = \ \frac{1}{N} \sum_{n=1}^{N} \exp(2 i \pi k a_n).$$

Si R est équi-répartie modulo I alors (a_n) est équi-répartie et on a

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{n=1}^{N} \exp(2 i \pi k a_n) = \int_{0}^{1} \cos(2 \pi k x) dx + i \int_{0}^{1} \sin(2 \pi k x) dx = 0.$$

3)b. Soit f une fonction continue sur I prenant les mêmes valeurs en 0 et en 1. Pour $N \geq 1$, on note

$$S_N: x \mapsto \sum_{n=-N}^{N} c_n(f) e^{2i\pi nx}$$
 et $\sigma_N: x \mapsto \frac{S_1(x) + \ldots + S_N(x)}{N}$

où $c_n(f)$ est le n-ième coefficient de Fourier de f. D'après le théorème de Féjer, la suite de fonctions $(\sigma_N)_{N\geq 1}$ converge uniformément vers f sur I: puisque F_A est un sev de E, ces fonctions sont des éléments F_A (en supposant que pour tout k on a $C(R, k, N) \to 0$).

Ceci étant valable pour toutes les fonctions continues sur I prenant les mêmes valeurs en 0 et en 1, on déduit de la question 2)b. que R est équi-répartie modulo I.

3)c. On pose $R = (n\theta)_{n \geq 1}$. Si θ est irrationnel, on obtient pour tout $k \in \mathbb{N}^*$:

$$C(R,k,N) \, = \, \frac{1}{N} \sum_{n=1}^{N} e^{2 \, i \, \pi \, k \, n \, \theta} \, = \, \frac{e^{2 \, i \, \pi \, k \, \theta} \, \left(e^{2 \, i \, \pi \, k \, N \, \theta} - 1 \right)}{N \, \left(e^{2 \, i \, \pi \, k \, \theta} - 1 \right)} \, \, \rightarrow \, \, 0 \quad quand \quad N \rightarrow + \infty \, ,$$

donc d'après la question précédente, R est équi-répartie modulo I dans ce cas.

Si θ est rationnel, soit $q \in \mathbb{N}^*$ tel que $q\theta \in \mathbb{N}$. Alors C(R, q, N) = 1 pour tout $N \geq 1$ et donc R n'est pas équi-répartie d'après la question 3)a..

4)a. D'après l'énoncé $\varphi'' \leq 0$ sur $[1, +\infty[$, donc φ' est décroissante sur cet intervalle, et comme $\varphi'(t) \to 0$ quand $t \to +\infty$ on en déduit que φ' est positive sur $[1, +\infty[$. De plus, comme 1/t est négligeable devant φ' on obtient

$$\forall \varepsilon > 0, \ \exists T, \ \forall t \ge T, \qquad \frac{1}{t} \le \varepsilon \, \varphi'(t),$$

et donc φ' est strictement positive sur $[1, +\infty[$ (car elle décroit vers 0 et ne peut s'annuler pour t grand).

Le théorème des accroissements finis permet de conclure que pour tout $n \geq 1$ il existe $\theta_n \in [n, n+1]$ tel que $d_n = r_{n+1} - r_n = \varphi(n+1) - \varphi(n) = \varphi'(\theta_n)$. Donc $d_n > 0$ pour tout $n \geq 1$ et $(d_n)_n$ tend vers 0 en décroissant quand $n \to +\infty$. De plus

$$\frac{1}{nd_n} = \frac{\theta_n}{n} \times \frac{1}{\theta_n \varphi(\theta_n)} \to 1 \times 0 = 0 \quad quand \ n \to +\infty.$$

4)b. On a (en notant K la constante qui apparaît comme étant une "Erreur!" dans l'énoncé):

$$\left| \frac{1}{N} \sum_{n=1}^{N} A_n - \frac{1}{N} \sum_{n=1}^{N} B_n \right| = \frac{1}{N} \left| \sum_{n=1}^{N} (A_n - B_n) \right| \le \frac{K}{N} \sum_{n=1}^{N} \left| \frac{1}{d_{n+1}} - \frac{1}{d_n} \right| + \frac{\pi}{N} \sum_{n=1}^{N} |d_n|$$

$$= \frac{K}{N} \sum_{n=1}^{N} \left(\frac{1}{d_{n+1}} - \frac{1}{d_n} \right) + \frac{\pi}{N} \sum_{n=1}^{N} d_n$$

$$= \frac{K}{N} \left(\frac{1}{d_{N+1}} - \frac{1}{d_1} \right) + \frac{\pi}{N} \sum_{n=1}^{N} d_n$$

D'après la question précédente, $\frac{1}{N d_{N+1}} \to 0$, et d'après le résultat de Cesaro on obtient que $\frac{1}{N} \sum_{n=1}^{N} d_n \to 0$ puisque $d_n \to 0$. On en conclut que

$$\lim_{N \to +\infty} \left| \frac{1}{N} \sum_{n=1}^{N} A_n - \frac{1}{N} \sum_{n=1}^{N} B_n \right| = 0.$$

Il reste à remarquer que

$$\frac{1}{N} \sum_{n=1}^{N} B_n = \frac{1}{2 i \pi N} \sum_{n=1}^{N} \left(\frac{A_{n+1}}{d_{n+1}} - \frac{A_n}{d_n} \right) = \frac{1}{2 i \pi N} \left(\frac{A_{N+1}}{d_{N+1}} - \frac{A_1}{d_1} \right)$$

et comme $|A_{N+1}| = 1$, on conclut comme précédemment que

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{n=1}^{N} B_n = 0.$$

On déduit de ce qui précède que $\lim_{N\to+\infty}\frac{1}{N}\sum_{n=1}^N A_n=0$.

4)c. On a démontré à la question précédente que pour la suite $R = (r_n)_{n\geq 1}$ on a $C(R, 1, N) \to 0$ quand $N \to +\infty$. Soit $k \in \mathbb{N}^*$, en appliquant les deux questions précédentes à la fonction $k \varphi$, qui satisfait aux mêmes hypothèses que φ , on obtient que $C(kR, 1, N) \to 0$ quand $N \to +\infty$ où kR est la suite $(kr_n)_{n\geq 1}$.

Puisque C(kR, 1, N) = C(R, k, N), on a donc obtenu que $C(R, k, N) \to 0$ quand $N \to +\infty$ pour tout entier $k \ge 1$. D'après la question 3)b., on en conclut que R est équi-répartie modulo I.

5)a. On pose $\Psi_{\alpha}(t) := \ln^{\alpha}(t)$ sur $[1, +\infty[$, et on calcule

$$\Psi_{\alpha}'(t) = \frac{\alpha}{t} \ln^{\alpha - 1}(t) \quad et \quad \Psi_{\alpha}''(t) = \alpha \frac{(\alpha - 1) \ln^{\alpha - 2}(t) - \ln^{\alpha - 1}(t)}{t^2}.$$

La fonction Ψ_{α} est à valeurs positives, elle est concave sur l'intervalle $[e^{\alpha-1}, +\infty[$ et vérifie $\Psi'_{\alpha}(t) = o(t)$. On a de plus $\frac{1}{t} = o(\Psi'_{\alpha}(t))$ dès que $\alpha > 1$.

Puisque seul le comportement asymptotique de A_{α} intervient dans l'étude de l'équi-répartition, ne considérer cette suite qu'à partir du rang $[(e^{\alpha-1})]+1$ (où [.] désigne la partie entière), rang à partir duquel Ψ_{α} est concave, permet de conclure d'après la question 4 que pour $\alpha>1$ la suite A_{α} est équi-répartie.

- **5)b.** Une primitive de $f: x \mapsto e^{2i\pi \ln(x)}$ sur \mathbb{R}_+^* est $F: x \mapsto \frac{1}{2i\pi} e^{2i\pi \ln(x)}$.
- 5)c. On calcule

$$|I_N| = \frac{1}{N} \left| \int_1^N e^{2i\pi \ln(x)} dx \right| = \frac{1}{2\pi N} \left| \left[e^{2i\pi \ln(x)} \right]_1^N \right| \le \frac{1}{\pi N}$$

car $|e^{2i\pi \ln(x)}| = 1$ pour tout réel $x \ge 1$. Donc $\lim_{N \to +\infty} |I_N| = 0$.

On a aussi

$$|L_N - I_N| = \frac{1}{N} \left| \sum_{n=1}^N e^{2i\pi \ln(n)} - \int_1^N e^{2i\pi \ln(x)} dx \right|$$

$$= \frac{1}{N} \left| 1 + \sum_{n=2}^N \left(e^{2i\pi \ln(n)} - \int_{n-1}^n e^{2i\pi \ln(x)} dx \right) \right|$$

$$= \frac{1}{N} \left| 1 + \sum_{n=2}^N e^{2i\pi \ln(n)} \int_{n-1}^n \left(1 - e^{2i\pi \ln(\frac{x}{n})} \right) dx \right|.$$

Il reste à remarquer que

$$\int_{n-1}^{n} \left(1 - e^{2i\pi \ln\left(\frac{x}{n}\right)} \right) \to 0 \quad quand \ n \to +\infty.$$

En effet

$$\left| \int_{n-1}^{n} \left(1 - e^{2i\pi \ln(\frac{x}{n})} \right) dx \right| = \left| \int_{n-1}^{n} \left(1 - e^{2i\pi \ln(1 + \frac{x-n}{n})} \right) dx \right|$$

$$\leq \int_{n-1}^{n} \left| 1 - e^{2i\pi \ln(1 + \frac{x-n}{n})} \right| dx$$

$$\leq \int_{n-1}^{n} \left| 1 - \cos(2\pi \ln(1 + \frac{x-n}{n})) \right|$$

$$+ \left| 0 - \sin(2\pi \ln(1 + \frac{x-n}{n})) \right| dx$$

$$\leq \int_{n-1}^{n} 2 \times 2\pi \left| 0 - \frac{x-n}{n} \right| dx \leq \frac{4\pi}{n} \to 0 \quad quand \ n \to +\infty,$$

où on a appliqué l'inégalité des accroissements finis aux fonctions $x \mapsto \cos(2\pi \ln(1+x))$ et $x \mapsto \sin(2\pi \ln(1+x))$ entre 0 et $\frac{x-n}{n}$, éléments de [0,1], intervalle sur lequel la dérivée de ces fonctions est majorée en valeur absolue par 2π .

On conclut du résultat de Cesaro que $|L_N - I_N| \to 0$ quand $N \to +\infty$, et donc $L_N \to 0$ quand $N \to +\infty$. On a donc prouvé que $C(A_1, 1, N) \to 0$ quand $N \to +\infty$.

Il reste à voir que les calculs effectués précédemment s'adaptent aussi pour prouver que $C(A_1, k, N) \to 0$ quand $N \to +\infty$ pour tout entier $k \geq 1$. On en déduit que A_1 est aussi équi-répartie.