SESSION DE 1992

concours interne de recrutement de professeurs agrégés et concours d'accès à l'échelle de rémunération

section : mathématiques

seuvième épreuve de mathématiques

Durée : 6 heures

Calculatrice de poche, y compris programmable et alphanumérique, à fonctionnement autonome, non imprimante, autorisée conformément à la circulaire n° 86-828 du 28 juillet 1986.

L'usage de tout ouvrage de référence, de tout dictionnaire et de tout autre matériel électronique est rigoureusement interdit.

Tournez la page S.V.P.
Notations:

Si \((a_n)_{n \in \mathbb{Z}}\) est une suite de nombres complexes, on dit que la série
\[\sum_{n=\infty}^{+\infty} a_n \]
converge si et seulement si les séries \(\sum_{n=0}^{+\infty} a_n\) et \(\sum_{n=1}^{+\infty} a_n\) convergent.

Le \(n\)-ième coefficient de Fourier d'une fonction \(f\) continue par morceaux
sur \(\mathbb{R}\), périodique de période \(2\pi\), à valeurs dans \(\mathbb{C}\), est noté \(c_n(f)\), il est
défini pour \(n\) dans \(\mathbb{Z}\) par:
\[c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} \, dt. \]

La première partie est consacrée à des résultats préliminaires: des
convergences d'intégrales en I.A. et des sommes de séries en I.B.

Dans la partie II.A. on transforme des fonctions de classe \(C^1\) de \(\mathbb{R}\) à
valeurs dans \(\mathbb{C}\), ayant une propriété de décroissance à l'infini, en des
fonctions \(2\pi\)-périodiques, ce qui permet d'établir une formule sommatoire.
Cette transformation est ensuite appliquée, en II.B., à la fonction \(x \mapsto e^{-x^2}\).

Le but de la partie III est l'étude du comportement asymptotique d'une
suite définie par une intégrale. Cette étude est ensuite utilisée pour
examiner la convergence d'une suite définie implicitement.

Les séries de Fourier sont employées dans les parties I.B. et II.
Les résultats et les théorèmes utilisés au cours des démonstrations
doivent être clairement énoncés par le candidat.

Les parties II et III sont indépendantes

\[\begin{array}{c}
\text{I} \\
\text{II} \\
\text{III}
\end{array} \]
Dans cette partie, f désigne une fonction continue sur ℝ, 2π-périodique, à valeurs dans C.

A.1. Vérifier pour tout réel α > 1 la convergence de l'intégrale \[\int_{1}^{+\infty} \frac{f(t)}{t^\alpha} \, dt \, . \]

A.2.i. Montrer que f est la dérivée d'une fonction 2π-périodique si et seulement si \(c_0'(f) \) est nul.

A.2.ii. En déduire, pour tout réel β > 0, la convergence de l'intégrale:

\[\int_{1}^{+\infty} \frac{f(t) - c_0(f)}{t^\beta} \, dt \, . \]

A.3.i. Soit β un réel de l'intervalle]0, 1]. Si \(c_0(f) \) est non nul, donner un équivalent en \(+\infty\) de la fonction: \(x \rightarrow \int_{1}^{x} \frac{f(t)}{t^\beta} \, dt \).

A.3.ii. A quelle condition l'intégrale \[\int_{1}^{+\infty} \frac{|f(t)|}{t} \, dt \] est-elle convergente ?

A.3.iii. Donner un équivalent en \(+\infty\) de la fonction: \(x \rightarrow \int_{1}^{x} \frac{\sin t}{t} \, dt \).

B.1. Justifier la convergence de la série:
\[\sum_{k=-\infty}^{+\infty} |c_k(f)|^2 \, . \]

Lorsque f est de plus de classe \(C^1 \) par morceaux, comparer \(c_k(f) \) et \(c_k(f') \); en déduire la convergence des séries:
\[\sum_{k=-\infty}^{+\infty} k^2 |c_k(f)|^2 \] et \[\sum_{k=-\infty}^{+\infty} |c_k(f)| \, . \]

Montrer alors l'existence d'un réel S > 0, indépendant de f, tel que:
\[\sum_{k=-\infty}^{+\infty} |c_k(f)| \leq |c_0(f)| + S \left[\int_{0}^{+\infty} |f'(t)|^2 \, dt \right]^{1/2} \, . \]

Tournez la page S.V.P.
B.2. En utilisant la fonction 2π-périodique définie sur l'intervalle $[-\pi, \pi]$ par $\theta(t) = t^2$, montrer que $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$ et calculer la somme des séries:

$$
\sum_{n=1}^{\infty} \frac{1}{n^2} \quad \text{et} \quad \sum_{n=1}^{\infty} \frac{1}{n}.
$$

B.3. On suppose que f est de classe C^1 par morceaux, montrer alors que pour tout réel x on a:

$$
|f(x) - \frac{1}{2\pi} \int_{0}^{2\pi} f(t) \, dt|^2 \leq \frac{\pi}{6} \int_{0}^{2\pi} |f(t)|^2 \, dt.
$$

Montrer qu'il existe une fonction réelle φ non constante, continue sur \mathbb{R}, de classe C^1 par morceaux et 2π-périodique, vérifiant:

$$
\sup_{x \in \mathbb{R}} \left| \varphi(x) - \frac{1}{2\pi} \int_{0}^{2\pi} \varphi(t) \, dt \right|^2 = \frac{\pi}{6} \int_{0}^{2\pi} |\varphi'(t)|^2 \, dt.
$$

II

A. Dans cette partie, g désigne une fonction de classe C^1 de \mathbb{R} à valeurs dans C vérifiant la condition (R) suivante:

(R): il existe $\alpha > 1$ et $M > 0$ tels que pour tout réel x :

$$
|x|^\alpha |g(x)| \leq M \quad \text{et} \quad |x|^\alpha |g'(x)| \leq M.
$$

A.1. Montrer que la suite de fonctions $(G_N)_{N \geq 0}$ définies par:

$$
G_N(x) = 2\pi \sum_{n=-N}^{N} g(x+2\pi n),
$$

converge uniformément sur tout intervalle borné de \mathbb{R}.

A.2. On désigne par G la limite de la suite $(G_N)_{N \geq 0}$. Démontrer que G est une fonction 2π-périodique de classe C^1.

A.3. Démontrer que pour tout k dans \mathbb{Z} l'intégrale $\int_{-\infty}^{+\infty} g(t) e^{-ikt} \, dt$ converge et a pour valeur $c_k(G)$. En déduire l'égalité:

$$
2\pi \sum_{n=-\infty}^{+\infty} g(2\pi n) = \sum_{k=-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} g(t) e^{-ikt} \, dt \right].
$$
A.4. Plus généralement, montrer que si \(h \) est une fonction de classe \(C^1 \) sur \(\mathbb{R} \) à valeurs dans \(\mathbb{C} \) vérifiant la condition (R), alors pour tout réel \(\lambda > 0 \) on a:

\[
\lambda \sum_{n=-\infty}^{+\infty} h(n\lambda) = \sum_{k=-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} h(t) e^{-2i\pi k t/\lambda} \, dt \right].
\]

B.1. Pour \(r > 0 \), on pose:

\[
D(r) = \{(x,y) \in \mathbb{R}^2 / x^2 + y^2 \leq r^2\} \quad \text{et} \quad A(r) = \{(x,y) \in \mathbb{R}^2 / |x| \leq r \text{ et } |y| \leq r\}.
\]

Calculer \(\iint_{D(r)} e^{(x^2 + y^2)} \, dx \, dy \).

En déduire par un encadrement convenable de \(\iint_{A(r)} e^{(x^2 + y^2)} \, dx \, dy \) les inégalités:

\[
\pi (1 - e^{-r^2}) \leq \left[\int_{-r}^{+r} e^{-x^2} \, dx \right]^2 \leq \pi (1 - e^{-2r^2}).
\]

B.2. Pour tout réel \(y \) on pose:

\[
F(y) = \int_{-\infty}^{+\infty} e^{-(x+iy)^2} \, dx.
\]

Existe.

B.2.i. Donner la valeur de \(F(0) \). Montrer que \(F \) définit une fonction constante sur \(\mathbb{R} \) (On pourra introduire la suite \((F_n)_{n \geq 0} \) définie par

\[
F_n(y) = \int_{-\infty}^{+\infty} e^{-(x+iy)^2} \, dx
\]

et calculer la dérivée de \(F \).

B.2.ii. En déduire la valeur des intégrales:

\[
\int_{-\infty}^{+\infty} e^{-x^2} e^{-2i\pi y} \, dx.
\]

B.3. En utilisant le résultat de II A.4, démontrer pour tout \(a > 0 \) l'égalité:

\[
\sum_{k=-\infty}^{+\infty} e^{-\pi k^2/a^2} = \frac{1}{a} \sum_{k=-\infty}^{+\infty} e^{-\pi k^2/a^2}.
\]

B.4. Pour \(x > 0 \) on pose

\[
\psi(x) = \sum_{k=-\infty}^{+\infty} e^{-\pi k^2/x}.
\]

Montrer que \(\psi \) est une fonction indéfiniment dérivable sur l'intervalle \([0, +\infty[\).

Etablir que pour tout \(x > 0 \) on a:

\[
0 \leq \psi(x) - 1 \leq 2 (e^{\pi x} - 1)^{-1} \quad \text{et} \quad \psi(x) = x^{-1/2} \psi(x^{-1}).
\]

En déduire que:

\[
\lim_{x \to 0^+} (\psi(x) - x^{-1/2}) = 0.
\]

Tournez la page S.V.P.
III

A.1. Vérifier que pour tout entier \(N \geq 1 \) et pour tout réel \(u \) de \([0,1]\) on a:
\[
\left| \ln(1+u) - \sum_{n=1}^{N} (-1)^{n+1} \frac{u^n}{n} \right| \leq \frac{u^{N+1}}{N+1}.
\]
En déduire la valeur de l'intégrale \(\int_{0}^{1} \frac{\ln(1+u)}{u} \, du \).

A.2. Établir pour tout entier \(n \geq 1 \) la majoration:
\[
\left| n \int_{0}^{1} \ln(1+t^n) \, dt - \int_{0}^{1} \frac{\ln(1+u)}{u} \, du \right| \leq \frac{1}{n+1}.
\]
En déduire pour tout \(\alpha \) de \([0,1] \) la limite de la suite \((u_n)_{n \geq 0} \) définie par:
\[
u_n = n \int_{\alpha}^{1} \ln(1+t^n) \, dt.
\]

A.3. Soient \(\alpha \) un réel de \([0,1]\) et \(f: [\alpha,1] \longrightarrow \mathbb{R} \) une application continue.

Démontrer que la suite \(v_n = n \int_{\alpha}^{1} f(t) \ln(1+t^n) \, dt \) converge vers \(\frac{\pi^2}{12} f(1) \) (On étudiera d'abord le cas où \(f(1) = 0 \)).

B. On utilise la notation \(U_n = o(1/n^2) \) pour traduire que la suite \((U_n)_{n \geq 0} \) vérifie: \(\lim n^2 U_n = 0 \).

Soit \(f \) une application à valeurs réelles, de classe \(C^1 \) sur l'intervalle \([a,b]\) où \(0 \leq a < b \).

On pose:
\[
I_n = \int_{a}^{b} \frac{t^n f(t)}{1 + t^n} \, dt.
\]

B.1. Dans le cas \(b < 1 \), montrer que pour tout entier \(p \geq 0 \) on a \(\lim_{n \to +\infty} n^p I_n = 0 \).

B.2. On suppose \(b = 1 \). A l'aide d'une intégration par parties, démontrer que:
\[
I_n = \frac{f(1) \ln 2}{n} - \frac{f(1) + f'(1)}{n^2} \frac{\pi^2}{12} + o(1/n^2).
\]
B.3. Lorsque \(a \leq 1 \), déduire des cas précédents l'existence de deux constantes \(\lambda \) et \(\mu \), que l'on exprimera, dans le cas \(a=1 \), en fonction de \(f(1) \) et \(f'(1) \), telles que:

\[
I_n = \int_a^b f(t) \, dt + \frac{\lambda}{n} + \frac{\mu}{n^2} + o(1/n^2).
\]

En déduire que si \(a<1<b \) alors on a:

\[
I_n = \int_1^b f(t) \, dt - \frac{f(1)+f'(1)}{n^2} \frac{\pi^2}{6} + o(1/n^2).
\]

B.4. Déterminer, suivant les valeurs du nombre réel positif \(\gamma \), trois constantes \(\lambda_1, \lambda_2, \lambda_3 \) telles que:

\[
\int_{0}^{\gamma} \frac{e^t}{1 + t^n} \, dt = \lambda_1 + \frac{\lambda_2}{n} + \frac{\lambda_3}{n^2} + o(1/n^2).
\]

B.5. Soit \(\alpha \) un réel positif. Montrer que pour tout entier \(n \) il existe un et un seul réel, noté \(x_n \), tel que:

\[
\int_0^x \frac{e^t}{1 + t^n} \, dt = \alpha.
\]

En examinant successivement les cas : \(0 \leq \alpha < e-1 \), \(e-1 < \alpha \) puis \(\alpha = e-1 \), étudier la convergence de la suite \((x_n)_{n \geq 0}\).