Devoir: un peu de topologie dans $M_n(\mathbb{R})$

8 novembre 2014

.Rappels : En dimension finie :

- toutes les normes sont équivalentes.
- toutes les applications linéaires sont continues.
- la sphère et la boule unité sont compactes.
- 1) On considère une nomre N sur \mathbb{R}^n assimilé à $M_{n,1}(\mathbb{R})$ et on note S la sphère unité de \mathbb{R}^n .

Montrer que les trois applications $\|.\|_{\infty}: A = (a_{i,j}) \mapsto \max_{i,j \in \{1,...,n\}} (|a_{i,j}|)$, $\|.\|_2: A \mapsto \sqrt{tr(tAA)}$ et $\|.\| : A \mapsto \max_{u \in S} (N(u))$ sont des normes sur $M_n(\mathbb{R})$ et que l'une d'entre elles est même euclidienne.

- 2) a) Montrer que les applications "coordonnées" $p_{k,l}: A=(a_{i,j})_{i,j\in\{1,...,n\}}\mapsto a_{k,l}$ et l'application déterminant sont continues sur $M_n(\mathbb{R})$.
- b) montrer que le produit de matrices et la somme de matrices sont des applications continues sur $M_n(\mathbb{R}) \times M_n(\mathbb{R})$.
- 3)a) Soit $A \in M_n(\mathbb{R})$, montrer que dans la famille $(A + \frac{1}{k}I_n)_{k \in \mathbb{N}^*}$ toutes les matrices sont inversibles sauf un nombre fini d'entre elles.
- b) Montrer que $Gl_n(\mathbb{R})$ est dense dans $M_n(\mathbb{R})$.
- 4)a) Montrer que l'ensemble O(n) des matrices orthogonales d'ordre n est une partie compacte de $M_n(\mathbb{R})$.
- b) Montrer que l'ensemble $S^+(n)$ des matrices symétriques positives d'ordre n est un fermé de $M_n(\mathbb{R})$.
- 5)a) montrer que $\forall M \in Gl_n(\mathbb{R}), M^tM$ est symétrique définie positive.
- b) monter que pour toute matrice S' symétrique définie positive il existe une unique matrice S symétrique définie positive telle que $S^2 = S'$.
- c) Soit $M \in Gl_n(\mathbb{R})$ et Ssymétrique définie positive telle quue $S^2 = M^t M$. Montrer que $S^{-1}M$ est orthogonale.
- d) Montrer que toute matrice $M \in Gl_n(\mathbb{R})$ s'écrit de façon unique sous la forme SO avec S symétrique définie positive et O orthogonale.
- e) Montrer que toute matrice $M \in M_n(\mathbb{R})$ peut s'écrire sous la forme SO avec S symétrique positive et O orthogonale.